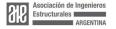


SIMULACIÓN NUMERICA DE LA INTERACCIÓN SUELO-ESTRUCTURA EN ESTRUCTURAS DE MAMPOSTERÍA SUJETAS A ASENTAMIENTOS POR CONSOLIDACIÓN DE SUELOS

Apel, Ionathan^{a,b}; Luege, Mariela^{a,b,d}; Orlando, Antonio^{a,c,d}
^aIngeniero Civil, ^bInstituto de Estructuras, Univ. Nac. de Tucumán
^cDep. de Bioingeniería, FACET, Univ. Nac. de Tucumán
^dCONICET, ionathanapel@gmail.com

RESUMEN


El presente trabajo analiza el asentamiento de un edificio en altura de 10 pisos, construido sobre fundaciones superficiales en suelo limo arcilloso, como se puede encontrar en la ciudad de San Miguel de Tucumán, y la consecuente respuesta nolineal de las construcciones cercanas preexistentes. Las construcciones de interés son: una casa de mampostería histórica, debido a que este tipo de estructuras resultan muy afectadas ante asentamientos diferenciales por su muy baja o nula resistencia a tracción, y otra casa más moderna con sistema de vigas y columnas de hormigón armado.

El análisis de interacción suelo-estructura se lleva a cabo mediante un proceso iterativo utilizando el software de elementos finitos ANSYS. Primeramente se calcula, para distintos instantes de tiempo, el asentamiento generado por la construcción del edificio tanto justo bajo el edificio como en las cercanías del mismo. Luego se resuelven las estructuras de interés bajo la nueva solicitación, en este caso serán desplazamientos no uniformes que actúan sobre las bases de las mismas. De esta manera podremos predecir el estado de deformación y falla (o no) de las estructuras preexistentes.

ABSTRACT

Aim of this work is to study the settlement of a footing foundations on lime clay soil produced by a multi-story building and to assess its mechanical effect on preexisting constructions located in its surroundings. Such constructions are formed by a historical masonry structure, with a global very low traction strength, and a low-rise reinforced concrete structure. The soil characteristics are those typically found in the city of San Miguel de Tucuman.

The soil-structure interaction analysis is carried out by means of an iterative process using the finite element software ANSYS. First the immediate and consolidation settlement due to the multi-story building is calculated, also in the surrounding areas, then a structural analysis of the structures affected by the soil settlement is carried out, which allows the assessment of their deformation and damage.

1. INTRODUCCIÓN

Ante una sociedad actual en constante evolución y creciente demanda de nuevas edificaciones el ser humano enfrenta una disminución importante del espacio disponible para nuevas construcciones, como resultado, las construcciones se ubican siempre más cercanas entre sí creciendo también en altura. Las técnicas de construcción utilizadas no siempre son las más apropiadas, por lo cual, la aparición fisuras en las construcciones preexistentes adyacentes a la nueva construcción, pueden según la gravedad del caso, provocar incluso el colapso de dichas estructuras.

Los proyectos estructurales suelen considerar que el suelo de apoyo de la cimentación se comporta como un sólido indeformable que permanece inalterado tras la carga. Sin embargo, la práctica en el diseño de cimentaciones indica que el suelo se deforma cuando se somete a cargas, lo que provoca a su vez alteraciones en la estructura. Las deformaciones de la cimentación se deben al asentamiento uniforme, que puede definirse sumando porciones del asentamiento inmediato y del asentamiento por consolidación del suelo. Por otro lado, el asentamiento diferencial o relativo, se puede definir como la diferencia entre el asentamiento de dos puntos adyacentes de la estructura.

El asentamiento diferencial y la distorsión angular pueden causar problemas estructurales cuando son excesivos. La distorsión angular se define como la relación entre el asentamiento diferencial entre dos cimentaciones adyacentes y la longitud del vano. El estado límite de servicio puede verse amenazado cuando la distorsión angular alcanza un valor específico en función del tipo de estructura y del material de construcción.

Es difícil predecir el asentamiento diferencial debido a la complicada interacción suelo-estructura y a la redistribución de la carga durante el asentamiento diferencial. Por lo tanto, se suele poner un límite al asentamiento total en un intento de controlar el asentamiento diferencial. Una regla general es que el asentamiento diferencial sea inferior al 75% del asentamiento uniforme^[1].

Las construcciones de mampostería, en particular, son una de las formas de edificación más importantes y antiguas. La mampostería es un material que tiende a ser rígido y quebradizo, capaz de soportar tensiones de compresión significativas. Es decir, su comportamiento mecánico se caracteriza principalmente por tener una baja resistencia a la tracción, pero una alta resistencia a la compresión. Sin embargo, es susceptible a fisuras debido a tensiones de tracción relativamente menores, especialmente cuando se trata de mampostería histórica, como es el caso del muro de mampostería de la fachada del Museo Nicolás Avellaneda (MNA) que se muestra en la *Figura 1*, la cual ha sufrido los daños remarcados con líneas negras debido a cambios en las estructuras adyacentes. Dicho edificio de casi 200 años de antigüedad, está ubicado en calle Congreso 56 de la ciudad de San Miguel de Tucumán, fue construido entre 1836 y 1837 para residencia del entonces gobernador José Manuel Silva y posteriormente sitio natalicio de su nieto, Nicolás Avellaneda, luego presidente de la Nación Argentina. Construcción muy querida en el corazón de la sociedad tucumana. La presencia de fisuras en su fachada puede ser poco significativa desde

el punto de vista estructural, pero tiene gran importancia desde el punto de vista estético, psicológico y económico.

Por este motivo, el análisis de la interacción suelo-estructura resulta de suma importancia para cuantificar el efecto que una nueva construcción puede provocar sobre construcciones cercanas, especialmente si son construcciones antiguas. Esta comprensión es fundamental para una adecuada preservación de las mismas.

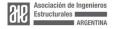


Figura 1. Muro de mampostería de la fachada del Museo Nicolás Avellaneda, San Miguel de Tucumán. En color negro se resaltan las fisuras más relevantes (Loretto, Gutiérrez & Luege, 2022)^{[2}

En el presente trabajo se estudian los asentamientos generados por la construcción de un edificio de 10 pisos y cómo ello puede afectar al muro de la fachada del Museo Nicolás Avellaneda. El análisis de interacción suelo-estructura se lleva a cabo por pasos, utilizando el software de elementos finitos ANSYS. Para ello se calculan primeramente los asentamientos generados por la construcción del edificio, los cuales se aplican luego al muro para estudiar su respuesta nolineal y eventual aparición de fisuras.

2. CALCULO DE ASENTAMIENTOS

El Museo se encuentra en el casco céntrico de San Miguel de Tucumán, emplazado sobre un suelo limo-arcilloso. Los suelos finos se caracterizan por su gran compresibilidad y poder de retención de agua, así como por su baja permeabilidad. Un incremento del esfuerzo provocado por la construcción de una estructura o la aplicación de cualquier tipo de carga sobre la superficie del terreno natural comprime los estratos de arcilla adyacentes, causando: deformaciones y un reacomodamiento de las partículas, como así también la expulsión de agua o aire existentes en los espacios vacíos, llamados poros. Las ecuaciones que describen dicho Organiza:

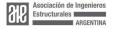
comportamiento se engloban en la llamada teoría de la consolidación tridimensional desarrollada por Biot(1941)^[4], la cual conlleva el planteo de las ecuaciones de equilibrio, de conservación de la masa, conjuntamente a las leyes de Hooke y Darcy, para obtener las siguientes cuatro ecuaciones que gobiernan el problema de consolidación tridimensional:

$$k\nabla^2 P = \alpha \frac{\partial \varepsilon_v}{\partial t} + \frac{1}{Q} \frac{\partial P}{\partial t} \tag{1}$$

$$G\nabla^2 u + \frac{G}{1 - 2v} \frac{\partial \varepsilon_v}{\partial x} - \alpha \frac{\partial P}{\partial x} = 0$$
 (2)

$$G\nabla^2 v + \frac{G}{1 - 2v} \frac{\partial \varepsilon_v}{\partial y} - \alpha \frac{\partial P}{\partial y} = 0$$
(3)

$$G\nabla^2 w + \frac{G}{1 - 2v} \frac{\partial \varepsilon_v}{\partial z} - \alpha \frac{\partial P}{\partial z} = 0 \tag{4}$$


Dichas ecuaciones están en términos de cuatro incógnitas: las componentes del vector desplazamiento u, v, w, referidas a los ejes x, y, z, respectivamente, y el exceso de presión de agua contenida en los poros P. A su vez, ε_v la deformación volumétrica $\varepsilon_v = \varepsilon_x + \varepsilon_y + \varepsilon_z$, G el módulo de corte, V el coeficiente de Poisson, G0 es un coeficiente que mide el cociente entre el volumen de agua eliminada y el cambio de volumen de suelo al ser comprimido y K1 la permeabilidad del suelo.

2.1 Análisis Elementos Finitos

Para realizar un análisis numérico de elementos finitos se utiliza el programa ANSYS Workbench y así obtener la distribución de asentamientos y presiones de poros en el perfil de suelo de interés. Ante la ausencia de una caracterización completa de dicho suelo, se procedió a completar los ensayos in situ con los obtenidos en la bibliografía para dicho tipo de suelos (Bowles, 1997)^[3], los cuales se detallan en la *Tabla 1*.

Cohesión (C)	1,20 [t/m²]
Angulo de Fricción Interna (φ)	16 [°]
Módulo de Elasticidad (E)	30 [<i>MPa</i>]
Permeabilidad (km)	1E ⁻¹¹ [<i>m</i> /s]
Coeficiente de Poisson (v)	0,4
Ángulo de Dilatancia (ϕ)	0 [°]

Tabla 1. Parámetros de un suelo típico en San Miguel de Tucumán.

2.2 Geometría y Discretización

El suelo sobre el cual apoya la construcción consiste en un perfil de suelo de 235m de ancho por 78m de alto, compuesto por un único estrato y completamente saturado. Se extiende 100m el modelo hacia ambos lados de los extremos de aplicación de la carga para considerar la influencia de las deformaciones sobre las construcciones adyacentes producidas por la construcción. Además, se incrementa 15m hacia la derecha para tener en cuenta el espacio ocupado por el Museo.

Para el modelado y mallado, se trabaja con un estado plano de deformaciones considerando los elementos bilineales CPT212, cuyas incógnitas nodales son los desplazamientos y la presión de poros (ver *Figura 2*). Como se deduce de las ecuaciones (1) a (4), la formulación del problema de consolidación es de tipo mixto u/p, para lo cual es necesario recurrir al uso de dicho elemento, el cual puede incorporarse al modelo a través de la utilización de Commands APDL.

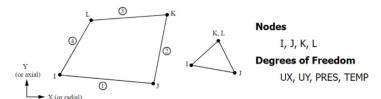


Figura 2. Elemento CPT212

La utilización de esta herramienta también permitió la incorporación del modelo de plasticidad de Mohr-Coulomb y considerar un tiempo final de análisis de 5000s.

En la *Figura* se muestra el mallado de elementos finitos adoptado en las simulaciones.

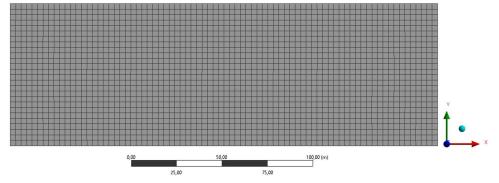


Figura 3. Mallado del perfil de suelo.

2.3 Condiciones de Borde

Para llevar a cabo el presente estudio, se considera la carga correspondiente a la construcción del edificio de 10 pisos publicado en Bhutto et al. (2020)^[5]. La construcción apoya sobre una platea de fundación de dimensiones 20m de ancho, 25m de largo y 1m de espesor, que descansa sobre el suelo. Se estima que la carga por piso es de 7kN/m², al estar compuesto principalmente por hormigón armado. La carga total abarca la suma de los 10 pisos, la planta baja y la losa de cimentación, dando como resultado un valor de 94kN/m².

Tanto el borde inferior como los laterales son impermeables para evitar la disipación de presión excesiva de poros. Además, para el borde inferior, se restringen los desplazamientos en las direcciones x (horizontal) e y (vertical); mientras que en los bordes laterales, el desplazamiento en y es libre y en x está restringido. En la *Figura* se presenta un esquema de la situación planteada.

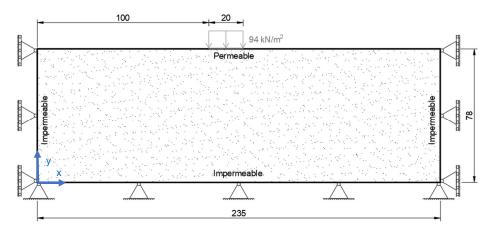


Figura 4. Modelo geométrico y condiciones de borde. Medidas en [m].

2.4 Resultados

Los resultados obtenidos de asentamiento y presiones se muestran en las *Figuras* 5 y 6. En la *Figura* 6 puede observarse la distribución de presiones en el tiempo t=1s y t=5000s. En t=1s, se observa un aumento de la presión de poros en correspondencia con la aplicación de la carga del edificio, mientras que en t=5000s el proceso de consolidación ha avanzado y el perfil presiones comienza a asemejarse al perfil hidrostático, previo al emplazamiento de la construcción. Dado que se trata de suelos limo arcillosos, el tiempo de consolidación puede esperarse bastante largos y pueden esperarse mayores que los que resultan de las simulaciones numéricas, ello debería considerarse en desarrollos futuros.

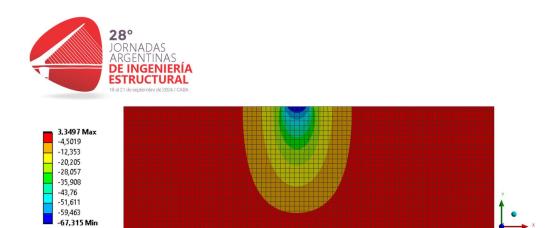


Figura 5. Distribución de asentamientos [mm] en la configuración indeformada de la malla para un tiempo t=5000s.

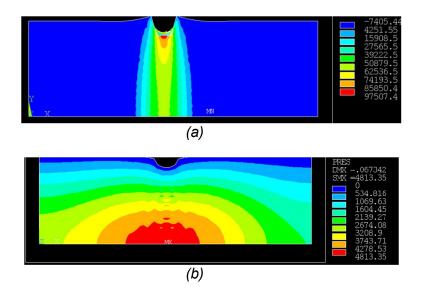


Figura 6. Distribución de presión de poros [N/m²] en la configuración deformada del suelo [esc 1:100] para los tiempo t=1s (a) y t=5000s (b).

En virtud de los asentamientos obtenidos para el tiempo final adoptado, en la *Figura* se grafican los valores de asentamiento del borde superior del perfil de suelo (y=78m) en función de la posición. Dichos desplazamientos serán utilizados como condición de borde (desplazamiento impuesto) del muro de fachada en estudio.

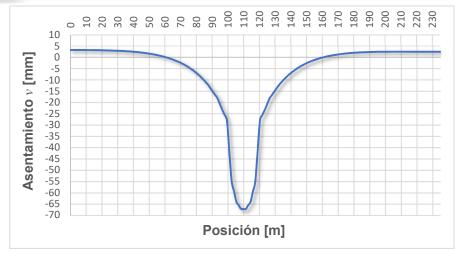


Figura 7. Perfil de asentamiento en t=5000s a lo largo el borde superior del perfil de suelo, y=78m.

A partir de los resultados obtenidos, se puede inferir que el asentamiento máximo obtenido para el tiempo el final considerado es de **67.3mm** (ver *Figura*). Al comparar este valor con los datos presentado en la *Tabla 2*, se evidencia que se encuentra dentro del rango admisible de asentamientos máximos para arcillas, comprendidos entre 65 y 100mm. Sin embargo, como se evidenciará en las secciones siguientes, para el caso de construcciones de mampostería histórica, dichos valores de asentamiento pueden dejar de considerarse dentro de valores aceptables.

Criterio	Fundaciones Aisladas	Platea de Fundación
Distorsión angular (agrietamiento)	1/	/300
Mayor asentamiento diferencial		
Arcillas	45	(35)
Arenas	32	(25)
Máximo asentamiento		
Arcillas	75	75-125 (65-100)
Arenas	50	50-75 (35-65)

Valores recomendables entre paréntesis

Tabla 2: Asentamientos diferenciales tolerables en edificios, mm (Bowles, 1997)^[3]

3 RESOLUCION NUMERICA DE LA FACHADA DEL MUSEO NICOLAS AVELLANEDA

En la sección anterior se han calculado los asentamientos que pueden provocar la construcción de un edificio en altura en el emplazamiento dado, por lo cual el objetivo de la presente sección es aplicar dichos desplazamientos a la base del muro en estudio. Para ello, a continuación se extenderá el trabajo realizado por (Loretto, Gutierrez, & Luege, 2022)^[2], donde se simuló mediante el método de elementos finitos el mapa de fisuración observado en la fachada del MNA, aplicando en este caso un desplazamiento impuesto coincidente con los valores mostrados en la *Figura 7*. De esta manera podemos simular de manera más cercana el estado de solicitación al cual ha sido expuesto el muro.

Las simulaciones numéricas nos permiten calcular con facilidad la respuesta del muro a distintas distancias del edificio, ello se realiza en el presente trabajo con el objeto de estimar la distancia a partir de la cual los efectos sobre estructuras de mampostería dejan de dar preocupación. Adicionalmente, y con el propósito de ampliar la investigación y mejorar la comparación de los resultados obtenidos, se resuelve un muro de geometría idéntica, pero con la utilización de materiales contemporáneos.

3.1 Análisis Elementos Finitos

Este análisis se lleva a cabo utilizando nuevamente el software de elementos finitos ANSYS Workbench. Las propiedades materiales utilizadas en las simulaciones están especificadas en las tablas que se muestran a continuación. En la *Tabla 3* se indican las propiedades de la madera, en la *Tabla 4* las propiedades de la mampostería histórica y en la *Tabla 5* las de la mampostería actual.

Propiedad	Valor
Densidad	935,7 [Kg/m³]
Módulo de Young	22780 [<i>MPa</i>]
Coeficiente de Poisson	0,3742

Tabla 3. Propiedades materiales de la madera de las vigas constructivas.

	Propiedad	Valor
	Densidad	1800 [<i>Kg/m</i> ³]
	Módulo de Young	2500 [<i>MPa</i>]
	Coeficiente de Poisson	0,2
	Ángulo de Fricción Interna Inicial	20 [°]
0	Cohesión inicial	0,6 [<i>MPa</i>]
Superficie de Fluencia	Ángulo de Dilatancia	0 [°]
	Ángulo de Fricción Interna Residual	20 [°]
	Cohesión Residual	0,4 [<i>MPa</i>]
Superficie	Acoplamiento de Resistencia Residual	Sin Acoplamiento
de Fluencia de Rankine	Resistencia a la Tracción Inicial	0,05 [<i>MPa</i>]
en Tracción	Resistencia a la Tracción Residual	0,02 [<i>MPa</i>]

Tabla 4. Propiedades materiales de la mampostería histórica.

	Propiedad	Valor
Densidad		1800 [<i>Kg/m</i> ³]
	Módulo de Young	3200 [<i>MPa</i>]
	Coeficiente de Poisson	0,3
	Ángulo de Fricción Interna Inicial	45 [°]
	Cohesión Inicial	1,8 [<i>MPa</i>]
Superficie de Fluencia	Ángulo de Dilatancia	11 [°]
	Ángulo de Fricción Interna Residual	37 [°]
	Cohesión Residual	0,7 [<i>MPa</i>]

Tabla 5. Propiedades materiales de la mampostería actual.

3.2 Geometría y Discretización

En la *Figura 8* se muestra la malla de elementos finitos utilizada en las simulaciones^[2] donde se utilizan elementos bilineales de cuatro notos PLANE 182 (ver Figura 4) en estado plano de tensiones. Se resaltan con distinto color los elementos correspondientes a vigas de madera constructivas en el entrepiso y cubierta, por representar mejor los resultados.

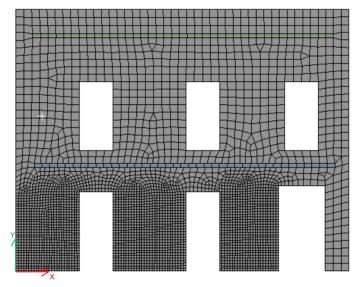


Figura 8. Malla de elementos finitos con vigas de madera.

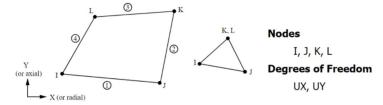


Figura 9. Elemento PLANE182.

3.3 Condición de Borde

Según la situación de emplazamiento del MNA, el mismo se encuentra actualmente delimitado por construcciones en ambos lados, lo que lleva a restringir los desplazamientos en la dirección x, tanto en los bordes laterales como en la base. El muro se puede desplazar libremente en la dirección y, excepto en su base donde se aplica el desplazamiento impuesto v, coincidente con el asentamiento mostrado en la *Figura 7*. Los valores de asentamiento claramente varían con la distancia en que se ubica el muro MNA respecto al edificio en altura.

En la *Figura 10* se ilustran las condiciones de bordes descriptas anteriormente y donde utiliza la siguiente nomenclatura:

- El peso propio del muro (g_m) y de las vigas (g_v) .
- Cargas producidas por el entrepiso (P₁) y cubierta (P₂).
- Asentamiento final inducido por la construcción del edificio v(x), aplicado todo a lo largo de la base del muro (ver *Figura 7*).

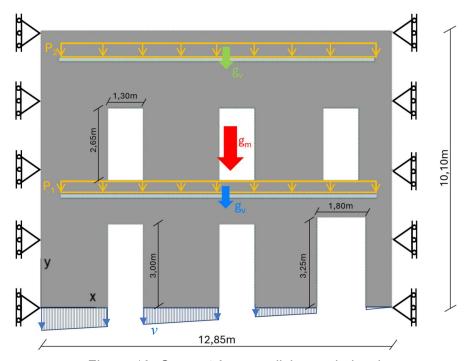


Figura 10. Geometría y condiciones de borde.

Para representar el proceso de fisuración del muro, en el presente trabajo la mampostería viene modelada mediante un modelo elastoplástico. De esta manera las fisuras se representan como deformaciones plásticas o permanentes en el material. Existen diferentes criterios para definir dicho límite, en el presente trabajo se optó por utilizar el criterio de Mohr Coulomb, adecuado para materiales friccionales con diferencias en los límites de tracción y compresión.

3.4 Resultados

A continuación, se muestran las *Figura 11* y *Figura 12* en las cuales varía la posición del muro con respecto al edificio (3m, 5m y 10m), y para los dos materiales mencionados, mampostería histórica y actual. Se observa que el muro de mampostería actual presenta una mayor deformación plástica en comparación con el muro de mampostería histórica, considerando las diversas posiciones del muro en relación con el edificio. Por otro lado, el muro de mampostería histórica presenta zonas de deformación plásticas en muros intermedios y aberturas de ventanas a 45°, mucho más marcadas que el muro de mampostería actual. A medida que aumenta la separación entre el muro y el edificio de 3m a 10m, la deformación plástica equivalente máxima en mampostería histórica pasa de 0.0108 a 0.0062. Para el caso de las construcciones contemporáneas de mampostería la deformación plástica equivalente Organiza:

máxima pasa de 0.035 a 0.015. Es decir, observamos una reducción del 57% en ambos casos al aumentar la distancia de separación de las construcciones de 3m a 10m.

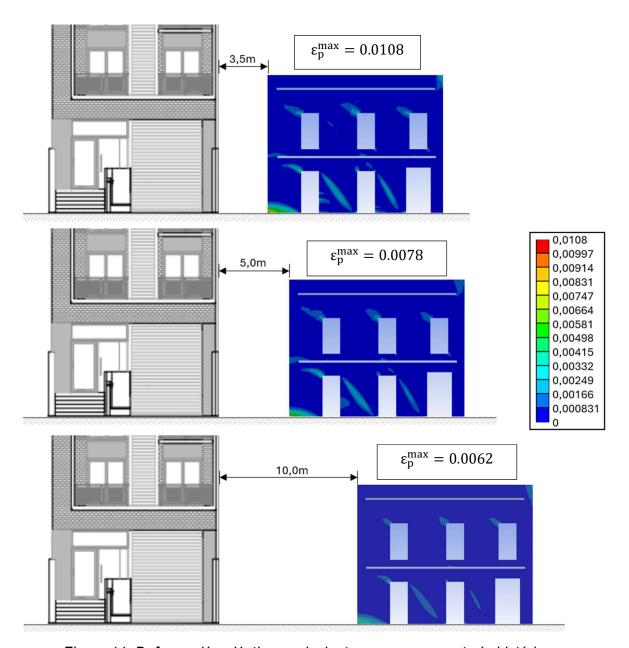
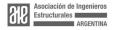



Figura 11. Deformación plástica equivalente $arepsilon_p$ en mampostería histórica.

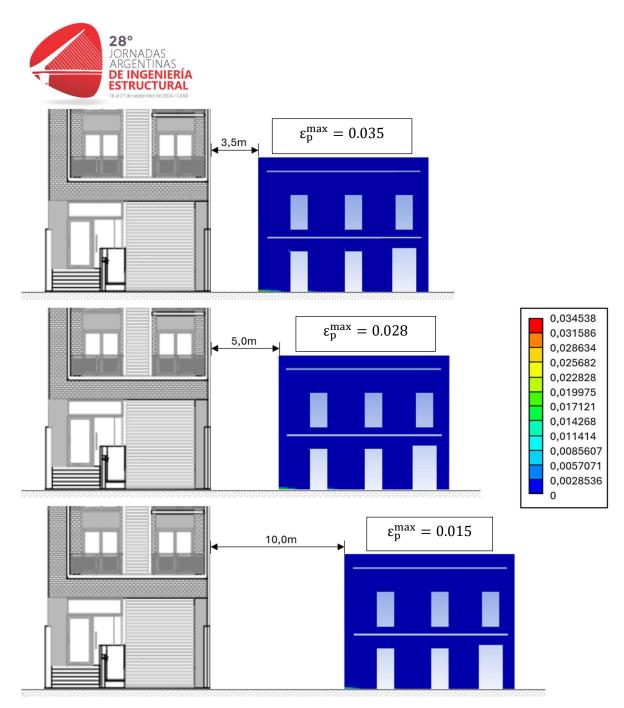
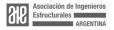
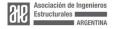



Figura 12. Deformación plástica equivalente ε_p en mampostería actual.

4 CONCLUSIONES

En primer lugar, para el análisis del suelo se consideró el modelo de plasticidad de Mohr-Coulomb por tratarse de un modelo básico que solo necesita tres parámetros elementales del suelo como datos de entrada. Se destaca por lo tanto la importancia de siempre contar con ensayos geotécnicos y datos precisos sobre las propiedades del suelo para llevar a cabo un análisis numérico.



Con respecto al muro de mampostería histórica del MNA y ante la construcción de un edificio cercano al mismo, se observan zonas de deformación plásticas en muros intermedios y aberturas de ventanas a 45°, mucho más marcadas que las que se obtendrían en un muro de mampostería actual. Se nota a su vez una reducción de hasta un (57%) de la deformación plástica al aumentar la separación entre construcciones de 3m a 10m. A raíz de ello, se puede apreciar cómo la respuesta de una mampostería histórica ante la modificación y/o emplazamiento de construcciones adyacentes sea muy delicada, evidenciando el particular cuidado y atención que necesitan estas construcciones.

Es importante señalar que el análisis de la interacción suelo-estructura ha demostrado ser una herramienta efectiva para representar los daños observados en el muro debido al asentamiento del suelo.

5 REFERENCIAS

- [1] Das, B. M., & Sivakugan, N. (2019). *Principles of Foundation Engineering* (Ninth ed.). (S. Edition, A cura di) USA: CENAGE.
- [2] Loretto, L., Gutierrez, S., & Luege, M. (2022). Simulación Numérica del Estado de Fisuración de un Edificio Histórico en Mampostería. *XXVII Jornadas Argentinas de Ingeniería Estructural*.
- [3] Bowles, J. E. (1997). Foundation Analysis and Design (Fifth ed.). McGraw-Hill.
- [4] Biot M.A. (1941) General theory of three-dimensional consolidation, *Journal of Applied Physics*, *12*, *155-164*.
- [4] Bhutto, A. H., Bhurgri, G. S., Zardari, S., Zardari, M. A., Memon, B. A., & Babar, M. M. (2020). Settlement Response of a Multi-Story Building. *Engineering, Technology & Applied Science Research*, 10(5), 6220-6223.
- [5] Oliver Olivella, X. y Agelet de Saracíbar Bosch, C.,2000. Mecánica de medios continuos para ingenieros. Ed. Universidad Politécnica de Catalunia, Barcelona.

email: aiejornadas@gmail.com

PLANILLA A ADJUNTAR CON EL TRABAJO Nro: 092

Nombre del trabajo: "SIMULACIÓN NUMERICA DE LA INTERACCIÓN SUELO-ESTRUCTURA EN ESTRUCTURAS DE MAMPOSTERÍA SUJETAS A ASENTAMIENTOS POR CONSOLIDACIÓN DE SUELOS"

Autor 1: No soy socio

Apellido y Nombre: Apel, Ionathan

• DNI: 40.436.201

Domicilio: 9 de julio 630 depto 1
Localidad: San Miguel de Tucumán

Provincia: TucumánTelefono: 381 6977219

• Titulo Profesional: Ingeniero Civil

• Socio AIE - SI/No

• Mail.- ionathanapel@gmail.com

Autor 2:

• Apellido y Nombre: Luege, Mariela

• DNI: 23.281.035

Domicilio : Barrio Las Rosas 2

Localidad : Yerba Buena
Provincia : Tucumán
Telefono : 0381 6731602

Titulo Profesional: Dr Ing. Civil

Socio AIE - SI/No

• Mail.- MLUEGE@HERRERA.UNT.EDU.AR

Autor 3:

Apellido y Nombre: Orlando, Antonio

DNI: 19.038.681

Domicilio: Barrio Las Rosas 2
 Localidad: Yerba Buena
 Provincia: Tucumán
 Telefono: 0381 6723571

• Titulo Profesional: PhD Ing Civil

• Socio AIE - SI/No

• Mail.- AORLANDO@HERRERA.UNT.EDU.AR

Nota1 : Repetir los datos filiatorios para cada uno de los autores.

Nota 2: Ud. considera que su trabajo debería encuadrarse como letra "L" del siguiente listado.

Α	NORMATIVAS	Aspectos reglamentarios para el proyecto y ejecución de estructuras
В	MATERIALES	Tecnología, utilización, desarrollo de materiales estructurales

email: aiejornadas@gmail.com

С	PROYECTO DE EDIFICIOS	Proyecto y calculo de todo tipo de estructuras para edificios
D	PUENTES Y OBRA CIVIL	Proyecto y calculo de estructuras de puentes, obras hidráulicas, industriales, etc
Ε	ESTRUCTURAS METALICAS Y MADERA	Proyecto y calculo de todo tipo de estructuras metálicas o de madera.
F	CONSTRUCCION DE ESTRUCTURAS	Desarrollo de obras, procesos y controles constructivos
G	ACCIONES SOBRE LAS ESTRUCTURAS	Estudio y análisis de acciones estáticas y/o dinamicas
Н	ANALISIS DE ESTRUCTURAS	Modelos y métodos
1	DINAMICA ESTRUCTURAL	Vibraciones, respuesta dinámica de estructuras
J	ESTRUCTURAS SISMORRESISTENTES	Acciones sísmicas, construcción sismorresistente, aisladores
Κ	PATOLOGIA Y REHABILITACION	Estudio y reparación de estructuras existentes
L	SUELOS Y FUNDACIONES	Geotecnia, interacción suelo-estructura, etc
М	PRESERVACION Y SUSTENTABILIDAD Y LA HUELLA DE CARBONO -	Materiales y construcción sustentable
N	LA INTELIGENCIA ARTIFICIAL APLICADA A LA INGENIERIA CIVIL	Inteligencia artificial en la Ing Civil y/o Estructural
0	OTRO	Indicar