RELACIÓN ENTRE LA NUDOSIDAD Y LAS CARACTERÍSTICAS RESISTENTES DE LA ARAUCARIA ANGUSTIFOLIA (PINO PARANA)

Alfredo Aníbal Guillaumet - Ingeniero en Construcciones – Especialista en Ing. Gerencial - Venado Tuerto, Argentina - Grupo CIDEC UTN FR Venado Tuerto.

Profesor Titular UTN FRVT – Investigador categoría III Programa de Incentivos MECyT – Titular de estudio de Ingeniería en Venado Tuerto.

Roberto Daniel Manavella – Ingeniero Civil - Venado Tuerto, Argentina. Grupo CIDEC UTN FR Venado Tuerto.

Profesor Titular en la UTN FRVT - Investigador categoría IV Programa de Incentivos MECyT - Titular de estudio de Ingeniería en Venado Tuerto.

María Cecilia Filippetti - Ingeniero en Construcciones - Venado Tuerto, Argentina - Grupo CIDEC UTN FR Venado Tuerto.

Jefe de T. Prácticos UTN FRVT – Investigador categoría V Programa de Incentivos MECyT - Titular de estudio de Ingeniería en Venado Tuerto.

Jacinto Diab. Ingeniero Mecánico - Doctor en Systems Engineering Design - Venado Tuerto, Argentina - Grupo CIDEC UTN FR Venado Tuerto.

Profesor Asociado UTN FRVT – Investigador categoría IV Programa de Incentivos MECyT. Responsable Área de Ingeniería de Los Olivares SA

Alberto Armas - Ingeniero Químico - Venado Tuerto, Argentina - Grupo CIDEC UTN FR Venado Tuerto.

Profesor Titular UTN FRVT – Investigador categoría IV Programa de Incentivos MECyT. Gerente Técnico de Obras Sanitarias de V.T.

RESUMEN:

En la publicación "Clasificación visual resistente de la *Araucaria angustifolia* procedente de Eldorado, Misiones" se plantea que uno de los parámetros a tener en cuenta en la clasificación resistente es la nudosidad expresada en porcentaje de la cara donde se manifiesta. Este estudio amplía el análisis sobre 150 de las vigas ensayadas a flexión y establece la correlación entre la resistencia a flexión y el porcentaje de la sección transversal ocupado por la nudosidad. Los ensayos de las piezas se realizaron de acuerdo a las prescripciones de la Norma UNE-EN 408.

Los resultados muestran una fuerte correlación negativa entre el porcentaje ocupado por nudos en la sección transversal y su resistencia a la flexión. Se alcanza también una fuerte correlación entre el momento de inercia calculado considerando a los nudos como vacíos y la resistencia a flexión.

Se concluye que en las piezas de madera aserrada de *Araucaria angustifolia* la nudosidad genera una importante pérdida de sección y es de suma importancia su consideración al momento del cálculo estructural. La clasificación visual propuesta en el trabajo mencionado brinda resistencias esperables para cada clase y esos valores son consistentes con lo calculado en un estudio por resistencia de materiales.

ABSTRACT:

In the publication "Resistant visual Classification of the Araucaria angustifolia coming from Eldorado, Misiones" we think about that one of the parameters to keep in mind in the resistant classification, is the knotti-ness, expressed in percentage of the face where it is manifested. This study enlarge the analysis about 150 of the beams rehearsed to flexion and it establishes the correlation among the resistance to flexion and the percentage of the transverse section occupied by the knotti-ness. The rehearsals of the pieces were carried out according to the Norma's prescriptions UNE-EN 408.

The results show a strong negative correlation among the percentage occupied by knots in the transverse section and their resistance to the flexion. It is also reached a strong correlation among the calculated moment of inertia considering to the knots like holes and the resistance to flexion.

We concludes that in the sawed wooden pieces of Araucaria angustifolia the knottiness generates an important loss of the section and it is of supreme importance its consideration to the moment of the structural calculation. The visual classification proposal in the mentioned work offers predictable resistances for each class and the value results are consistent with the calculated thing in a study for resistance of the materials.

INTRODUCCIÓN

La industria de la construcción en nuestro país utiliza la madera en diversas aplicaciones, estructuras, revestimientos, pisos, cielorrasos, aberturas y en algunos pocos casos como cerramiento vertical.

Las especies utilizadas habitualmente son nativas de bosques naturales (lapacho, virapitá, incienso, etc...) con excelentes propiedades, pero la disminución alarmante de los bosques y la toma de conciencia de la necesidad de proteger este recurso genera la utilización de madera de plantaciones de reforestación.

Las especies de reforestación poseen buenas propiedades resistentes pero todavía existen muchas imprecisiones e incertezas sobre las mismas. En nuestro país los ensayos para determinar las propiedades mecánicas de piezas estructurales de madera de especies reforestadas con defectos corresponden a investigaciones realizadas en los últimos años. Estos trabajos han generado la norma IRAM 9670 de clasificación en grados de resistencia para la madera aserrada de pinos resinosos (*Pino elliotti y Pino taeda*) del noreste argentino mediante una evaluación visual y las normas 9662-1/2/3 de clasificación de tablas (*Araucaria angustifolia, Pino elliotti y Eucalyptus grandis*) para la fabricación de vigas laminadas.

Además de los trabajos de investigación que han brindado las bases para la confección de normativa IRAM existen diversas publicaciones que aportan datos sobre el comportamiento de la madera de reforestación, pero es necesario aumentar los esfuerzos para conocer mucho más profundadamente su comportamiento y brindar a los profesionales de la construcción la información necesaria para diseñar y proyectar las estructuras con mayor seguridad y economía.

Este trabajo se desarrolla sobre el ensayo de 150 vigas de madera aserrada de Pino Paraná (*Araucaria angustifolia*), y analiza la relación existente entre la resistencia a la flexión y la nudosidad que presenta el elemento.

ANTECEDENTES EN CLASIFICACIÓN DE ARAUCARIA ANGUSTIFOLIA

En la publicación "Diseño de un método de clasificación visual de madera a utilizar en la fabricación de vigas laminadas" se establecen criterios de clasificación para determinar dos clases resistentes en tablas de *Araucaria angustifolia* destinadas a la fabricación de vigas de madera laminada. Se consideran dos parámetros, primero la presencia de médula que se admite solo en la clase 2, y después se limita la dimensión de la nudosidad, hasta 1/3 de la dimensión de la cara donde se manifiesta para la clase 1 y entre 1/3 y 2/3 para la clase 2. La publicación presenta los valores característicos de resistencia de la madera de esta especie para cada clase resistente.

En cuanto a la clasificación de vigas aserradas tomaremos como base la publicación que efectuamos en el III Congreso Iberoamericano De Productos Forestales y No Forestales en Junio de 2007 "Clasificación Visual Resistente de la *Araucaria angustifolia* procedente de Eldorado, Misiones, Argentina". La misma presenta los criterios para establecer tres clases resistentes. Nuevamente aparecen la médula y la nudosidad como los parámetros determinantes para establecer los límites entre clases. En el desarrollo de este trabajo retomaremos las conclusiones de esa publicación y avanzaremos en otros criterios de evaluación de la nudosidad; y se evaluará la modificación del momento de inercia en las secciones con nudos a la luz de los resultados experimentales.

DESCRIPCIÓN DEL NUDO COMO DEFECTO

Los nudos son una inclusión de una rama en el tallo de árbol. En todos los casos es considerado como un defecto de la madera e incide en varios aspectos:

- Dificulta la trabajabilidad (operaciones de corte, confección de uniones, lijado y barnizado).
- Genera particularidades de orden estético que en muchos casos pueden ser valoradas en forma negativa.
- Provoca inconvenientes en el comportamiento mecánico, fundamentalmente a tracción y flexión.

Como nuestro trabajo está orientado a describir las propiedades de las vigas aserradas de *Araucaria angustifolia* para uso estructural evaluaremos la incidencia del nudo en el comportamiento mecánico.

"La presencia de nudos disminuye de forma notable la resistencia de la madera, sobre todo a los esfuerzos de tracción y flexión, haciendo el efecto que si de un agujero de la madera se tratara. La posición del nudo en la pieza también influye en

perdida de resistencia" (Tecnología de la madera en la construcción arquitectónica. Vignote Peña S. et al)³

En la figura 1 se aprecia el desvío de las fibras provocado por la presencia del nudo, este defecto afecta la rigidez y resistencia del material.

Figura 1: agrupamiento de nudos con desviación de las fibras

La especie que estamos estudiando, por la particularidad del crecimiento de varias ramas en un mismo nivel y a intervalos prácticamente regulares, genera que muy rara vez se presentan nudos aislados sino que se presentan como agrupamiento de nudos, figuras 1 y 4.

ENSAYOS Y CORRELACIONES

Tal como se mencionó precedentemente este trabajo es la profundización de los estudios presentados en la publicación "Clasificación Visual Resistente de la *Araucaria angustifolia* procedente de Eldorado, Misiones, Argentina", por lo que se realizará una breve reseña de las condiciones en que fue ejecutado ese trabajo para luego avanzar sobre los nuevos análisis.

La especie forestal de la que se estudió el comportamiento estructural es el Pino Paraná (*Araucaria angustifolia* (Bert.) O. Ktze), procedente de Eldorado, Provincia de Misiones, Argentina.

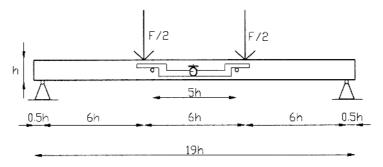


Figura 2: esquema de cargas para ensayo a flexión

Se realizó el ensayo de 256 vigas de madera aserrada, divididas en 5 series de distinta escuadría (2"x 3", 2" x 4", 2" x 5", 2" x 6" y 3" x 6"). Los ensayos se realizaron de acuerdo a las prescripciones de la Norma Europea EN 408. La figura 2 esquematiza el modelo de ensayo.

La expresión para determinar la resistencia a flexión es:

$$f_m = \frac{aF_{m\acute{a}x}}{2W} \tag{1}$$

 $f_{\scriptscriptstyle m}$ Resistencia a flexión en N / mm²

Distancia entre un punto de carga y el apoyo más próximo en el ensayo de flexión, en milímetros

 F_{max} Carga máxima, en newton

W Módulo resistente de la sección, en milímetros elevados a la tercera potencia

El módulo de elasticidad se obtiene de la medición de deformaciones en una luz de 5h en el centro de la viga y la expresión para determinarlo es:

$$E_{m} = \frac{al_{1}^{2} (F_{2} - F_{1})}{16 I(w_{2} - w_{1})}$$
 (2)

 E_{m} Módulo de elasticidad en flexión en N/mm²

 $F_2 - F_1$ incremento de carga en la parte recta de la curva carga-deformación, en newton

 $w_2 - w_1$ Incremento de la deformación correspondiente a $F_2 - F_1$, en milímetros

a Distancia entre un punto de carga y el apoyo más próximo en el ensayo de flexión, en milímetros

In Longitud base de medida utilizada para la determinación del módulo de elasticidad, en milímetros

Momento de inercia, en milímetros elevados a la cuarta potencia

Las piezas son ensayadas con los defectos en la posición más desfavorable, por ello la resistencia a flexión y el módulo de elasticidad están influenciados por su presencia, esta es la base sobre la que se propuso la clasificación en clases resistentes.

En ese trabajo se analizan tres criterios para evaluar la nudosidad:

Criterio de nudosidad N1 (Nudo mayor): relación entre la dimensión del nudo mayor y el de la superficie externa donde se manifiesta.

Criterio de nudosidad N2 (Grupo de nudos): relación entre la dimensión del nudo o grupo de nudos ubicados en un largo igual al canto de la viga, lo que resulte mayor, y el de la superficie externa donde se manifiesta.

Criterio de nudosidad N3 (Perímetro): relación entre la sumatoria de las dimensiones de todos los nudos que se manifiestan en un largo igual al canto de la

viga (grupo de nudos en todas las caras de la sección estudiada) y el perímetro de ésta en la sección en estudio.

Con la intención de aumentar los parámetros de evaluación se incorporan dos criterios de evaluación de la nudosidad:

Criterio de nudosidad N4 (Proyección sobre cuartos extremos de la sección transversal): % ocupado por la proyección de los nudos sobre los extremos (cuartos) de la sección transversal.

Criterio de nudosidad N5 (Proyección sobre la sección transversal): % ocupado por la proyección de los nudos en la sección transversal.

La figura 3 ilustra sobre la determinación de los criterios de nudosidad.

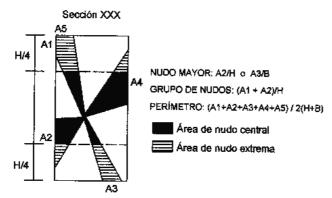


Figura 3: esquema para ilustrar los criterios de nudosidad

En el anexo 1 se presentan los valores experimentales de las series 3, 4 y 5, tablas 5, 6 y 7. Se debe tener en cuenta que los valores de resistencia a la flexión se ajustaron al canto de referencia de 150 mm y los valores de módulo de elasticidad a la humedad de referencia de 12%.

	COEFICIENTE DE CORRELACIÓN ENTRE PARÁMETROS										
PARAMETRO 1	PARAMETRO 2	MUESTRA									
PARAWEIRO	PARAWETRO 2	3 (2" x 4")	4 (2" x 6")	5 (3" x 6")	3 + 4 + 5						
RESISTENCIA A LA FLEXIÓN	CRITERIO DE NUDOSIDAD N1	-0,55	-0,68	-0,43	-0,55						
RESISTENCIA A LA FLEXIÓN	CRITERIO DE NUDOSIDAD N2	-0,62	-0,66	-0,39	-0,56						
RESISTENCIA A LA FLEXIÓN	CRITERIO DE NUDOSIDAD N3	-0,69	-0,73	-0,61	-0,66						
RESISTENCIA A LA FLEXIÓN	CRITERIO DE NUDOSIDAD N4	-0,61	-0,74	-0,64	-0,60						
RESISTENCIA A LA FLEXIÓN	CRITERIO DE NUDOSIDAD N5	-0,63	-0,75	-0,69	-0,66						
RESISTENCIA A LA FLEXIÓN	DENSIDAD	0,65	0,46	0,61	0,56						
RESISTENCIA A LA FLEXIÓN	MÓDULO DE ELASTICIDAD	0,73	0,81	0,77	0,76						
MÓDULO DE ELASTICIDAD	CRITERIO DE NUDOSIDAD N1	-0,48	-0,69	-0,43	-0,50						
MÓDULO DE ELASTICIDAD	CRITERIO DE NUDOSIDAD N2	-0,37	-0,60	-0,56	-0,47						
MÓDULO DE ELASTICIDAD	CRITERIO DE NUDOSIDAD N3	-0,51	-0,68	-0,57	-0,57						
MÓDULO DE ELASTICIDAD	CRITERIO DE NUDOSIDAD N4	-0,37	-0,66	-0,61	-0,45						
MÓDULO DE ELASTICIDAD	CRITERIO DE NUDOSIDAD N5	-0,39	-0,67	-0,64	-0,53						
MÓDULO DE ELASTICIDAD	DENSIDAD	0,58	0,54	0,59	0,57						

Tabla 1: Correlación entre los criterios de evaluación de la nudosidad y la resistencia a flexión y el módulo de elasticidad.

La tabla 1 presenta la correlación entre los criterios para evaluar la nudosidad y la resistencia a flexión y el módulo de elasticidad.

Los tres primeros criterios fueron analizados en extenso en el trabajo citado. Se debe destacar de los mismos que el criterio N3 es el de mayor correlación (0,66) contra el valor de N2 (0,56), pero a los efectos de proponer un sistema de clasificación en clases resistentes se prefirió el criterio N2 por ser su aplicación mucho más sencilla para un operario. No se debe olvidar que la eficiencia de la clasificación visual está directamente relacionada con la posibilidad de una aplicación rápida y sencilla por parte de un operario entrenado.

La propuesta de analizar los criterios de nudosidad N4 y N5 tiene como finalidad realizar una evaluación relacionada con la sección transversal que es la que resiste a flexión y comparar con la correlación seleccionada para clasificar.

En la tabla 1 se puede apreciar que la correlación con la resistencia a flexión del criterio N4 (solo nudos en los cuartos extremos) es ligeramente superior al criterio adoptado para clasificar (N2) pero inferior al criterio N3; el criterio N5 (todos los nudos en la sección transversal) es igual a N3. Se puede apreciar también que en las tres series los criterios N4 y N5, al igual que el N3, presentan valores muy similares al del total de las probetas sin mostrar un valor muy disperso como el de N2 en la muestra 5.

En el análisis de las correlaciones para el módulo de elasticidad se aprecia que los valores son sensiblemente inferiores a los observados para la resistencia a flexión. Los valores del criterio N4 son similares a los del criterio N2 y los del criterio N5 a los del criterio N3.

DETERMINACIÓN DE CORRELACIONES									
	MOMENTO DE INERCIA								
PARAMETRO	SECCION	NUDOS CO	MO VACIOS						
	COMPLETA	TODOS	TRACCIÓN						
RESISTENCIA A LA FLEXIÓN	0,42	0,75	0,67						
MODULO DE ELASTICIDAD	0,42	0,64	0,49						

Tabla 2: Correlación entre la resistencia a flexión y el módulo de elasticidad con la inercia de la pieza

La tabla 2 presenta la correlación entre los valores obtenidos de resistencia a flexión experimentales (considerando en las expresiones (1) y (2) la inercia con la sección completa), con la inercia de la sección completa, la inercia de la sección considerando como vacíos todos los nudos y la inercia de la sección considerando como vacíos los nudos de la zona traccionada. Se aprecia que en la sección completa la correlación baja (0,42) y que la mayor correlación se da para la consideración de todos los nudos como vacíos (0,75). Para el módulo de elasticidad se produce la misma evaluación, aunque con correlaciones sensiblemente menores. Se puede afirmar que la nudosidad genera una pérdida de sección con una fuerte incidencia en las tensiones a flexión y el módulo de elasticidad.

ENSAYOS, RESISTENCIA A FLEXIÓN Y MOMENTO DE INERCIA

En los párrafos anteriores ya se manifestó que los valores obtenidos de resistencia a flexión y módulo de elasticidad fueron obtenidos en ensayos de piezas con nudos y que las expresiones (1) y (2) son las indicadas por la Norma EN 408 para determinar los valores. Se puede apreciar que ambas expresiones utilizan los valores de módulo resistente a flexión y momento de inercia de la sección transversal completa, es decir sin considerar los nudos. Esta forma de cálculo es útil a los efectos de determinar los valores para una clasificación visual, pero nuestro interés es evaluar, con la teoría de la resistencia de materiales, como afecta a las propiedades resistentes la presencia de los nudos. Ya se apreció la fuerte correlación existente entre la resistencia a flexión determinada y la inercia de la sección considerando a los nudos como vacíos.

De acuerdo a las consideraciones sobre el efecto de los nudos en la resistencia de las vigas de madera vertidas en el libro "Tecnología de la madera en la construcción arquitectónica"³, se avanzó en determinar las tensiones generadas en las vigas de la serie 4 (vigas de 2" x 6") con las cargas de rotura experimentales y la inercia de la sección neta, suponiendo a los nudos como vacíos.

En primera instancia se considera a todos los nudos existentes en la sección donde se inició la rotura como vacíos y de acuerdo a ello se calcula el momento de inercia para cada uno de los ejes, el momento de inercia centrífugo y los momentos de inercia para los ejes principales, después se consideran como vacíos los nudos que están en la zona traccionada y se calculan nuevamente todas las inercias.

La consideración de los nudos como vacíos genera que la flexión recta se transforme en flexión oblicua en virtud de que la distribución de los nudos en la sección es aleatoria y en general no simétrica. La figura 4 corresponde a secciones de *Araucaria angustifolia* con agrupamiento de nudos, se aprecia a la izquierda las secciones sin simetría y hacia la derecha como la aleatoriedad genera un aumento de simetría.

Figura 4: fotografía de secciones transversales con agrupamiento de nudos

Para calcular las tensiones se utiliza la siguiente expresión proveniente de la resistencia de los materiales:

$$\sigma_z = \frac{(M_y * I_x + M_x * I_{xy}) * x - (M_x * I_y + M_y * I_{xy}) * y}{(I_{xy}^2 - I_x * I_y)}$$
(3)

De acuerdo al sistema de cargas solo existe M_x y de la aplicación de la ecuación (3) se confeccionan las tablas 8, 9 y 10 obrantes en el Anexo 2.

La tabla 3 presenta el análisis estadístico de la resistencia a flexión y el módulo de elasticidad para cada una de las consideraciones de la nudosidad enunciadas.

RESISTENCIA A FLEXIÓN										
	SECCION	NUDOS CO	MO VACIOS							
	COMPLETA	TODOS	TRACCIÓN							
PROMEDIO	45,26	64,14	60,40							
PERCENTIL 5%	20,63	39,37	32,57							
DESVIACIÓN STD.	15,01	15,44	16,46							
MAXIMO	80,80	102,51	102,51							
MINIMO	18,97	34,13	28,34							
M	ODULO DE ELAS	STICIDAD								
M	SECCION		MO VACIOS							
M			MO VACIOS TRACCIÓN							
PROMEDIO	SECCION	NUDOS CO	_							
	SECCION COMPLETA	NUDOS CO TODOS	TRACCIÓN							
PROMEDIO	SECCION COMPLETA 13.674	NUDOS CO TODOS 17.338	TRACCIÓN 16.142							
PROMEDIO PERCENTIL 5%	SECCION COMPLETA 13.674 7.981	NUDOS CO TODOS 17.338 11.829	TRACCIÓN 16.142 10.372							

Tabla 3: Valores obtenidos para la resistencia a flexión y el módulo de elasticidad considerando la sección bruta y la sección disminuida por la presencia de grupos de nudos

Como era de esperarse al ser menor la inercia se produce un aumento de la tensión, que es mayor para la consideración de todos los nudos como vacíos que cuando se considera solo los existentes en la zona traccionada. Aumenta el percentil del 5% y el promedio y se mantiene la desviación estándar. De la misma manera ocurre para el módulo de elasticidad, aunque en este caso aumente la desviación estándar.

Estos valores por sí mismos no dicen nada nuevo, pero resulta de sumo interés su comparación con los valores obtenidos en la clasificación en clases resistentes propuesto en el trabajo "Clasificación Visual Resistente de la *Araucaria angustifolia* procedente de Eldorado, Misiones, Argentina"¹, de ese trabajo se reproduce en la tabla 4 parte de la tabla que analiza distintos criterios de clasificación. Se presenta solamente el criterio 5 en virtud de que es el seleccionado para la clasificación visual.

Se puede apreciar que los valores alcanzados para las tensiones en flexión, considerando a todos los nudos como vacíos, son similares a los obtenidos para la clase 1 del criterio 5 de la tabla 4. Para el módulo de elasticidad medio en flexión estática se aprecia un valor ligeramente superior.

		U.	TODAS	CLASE 1	CLASE 2	CLASE 3
	Médula			NO	SI	SI
5	GN	%		<40%	<60%	>60%
RIC	Probetas	%	100%	19,92%	56,10%	23,98%
CRITERIO	f 05	N/mm2	21,14	43,60	24,32	20,06
S	E _{medio}	N/mm2	13.323	15.514	13.276	11627
	$ ho_{05}$	Kg/m3	390	443	390	387

Tabla 4: parte de la Tabla 2 "Criterios para evaluar límites entre clases resistentes" de la publicación "Clasificación Visual Resistente de la *Araucaria angustifolia*"

La determinación de los distintos momentos de inercia con que se evaluó la incidencia de la nudosidad también presenta sus consideraciones. Los nudos son irregulares y su valoración se efectuó por métodos aproximados. Las fibras de la madera no se cortan en el nudo sino que se desvían produciendo un aumento de densidad sobre el perímetro del nudo.

Se debe considerar que en la clase 1 de la tabla 4 se admiten nudos hasta un 40% de la dimensión de la cara donde se manifiesta pero no se admite médula y los valores corresponden a 250 ensayos, mientras que la evaluación de las inercias se realizó sobre 48 vigas evaluando los nudos y la médula como vacíos, alcanzando valores similares, sin duda que en la clase 1 la existencia de nudos y mayores valores de resistencia a flexión se deben a que al no admitir médula no hay presencia de madera juvenil de menor resistencia, mientras que sí está presente en el estudio de inercias.

Las propiedades resistentes de la madera no están solo afectadas por la nudosidad, la bibliografía recomendada deja en claro que la presencia de médula, la inclinación de las fibras, fisuras previas a la aplicación de cargas, madera juvenil, madera de reacción, tenor de humedad, entre otras, influyen en las características resistentes, por ello que los valores solo difieran en aproximadamente un 10% es muy significativo. Debe tenerse en cuenta también la anisotropía y heterogeneidad del material.

De lo expuesto se infiere que considerar a los nudos como vacíos representa acertadamente el comportamiento experimental. Si se considera que para esta especie los nudos no se presentan aislados sino en agrupamientos a intervalos regulares, la pérdida de inercia se produce en varias secciones de la viga, por ello a los efectos de evaluar deformaciones debe considerarse no solo la sección de mayor nudosidad sino además la cantidad de secciones afectadas por este defecto. El método propuesto de clasificación para vigas aserradas de esta especie no considera este parámetro, tampoco lo hacen las normas de IRAM de clasificación mencionadas en la introducción y en bibliografía.

CONCLUSIONES

- ✓ Se aprecia que la correlación con las propiedades resistentes de una viga de madera aserrada de *Araucaria angustifolia* es sensiblemente mayor si se consideran los nudos en la sección transversal completa y no solamente en los cuartos extremos de la misma.
- ✓ La correlación con las propiedades resistentes considerando la proyección de los nudos sobre la sección transversal (N5) es similar a la de considerar los nudos sobre el perímetro de una sección (N3) y superior al criterio de evaluar los nudos en una cara de la viga (N2).
- ✓ La diferencia de correlaciones indicada no invalida la consideración del criterio N2 (% del grupo de nudos en relación a la dimensión de la cara donde se manifiestan), sino todo lo contrario, lo confirma como base para proponer un sistema de clasificación en clases resistentes.
- ✓ Diseñar criterios complejos para evaluar la nudosidad en vigas de madera aserrada de *Araucaria angustifolia* aumenta la correlación con las propiedades resistentes, pero ese aumento trae aparejado un crecimiento en la complejidad de la aplicación, a través de un operario entrenado, en la clasificación visual en aserradero. La evaluación de la nudosidad a través de la relación entre la dimensión del nudo o grupo de nudos ubicados en un largo igual al canto de la viga, lo que resulte mayor, y el de la superficie externa donde se manifiesta es el más recomendable.
- ✓ Evaluar a los nudos como vacíos, para determinar los momentos de inercia, representa acertadamente el comportamiento observado en los ensayos realizados.
- ✓ La clasificación visual permite al calculista utilizar valores de tensión por clase y considerar secciones brutas, evitando la complejidad de evaluar la pérdida de sección por defectos, sin disminuir el nivel de seguridad estructural.
- ✓ La propuesta de clasificación visual realizada en el trabajo "Clasificación Visual Resistente de la *Araucaria angustifolia* procedente de Eldorado, Misiones, Argentina"¹parece ser adecuada, pero sería de mucha utilidad que otro grupo de investigadores realice nuevos ensayos para contrastar valores y luego proponer la redacción de una normativa IRAM específica. En el Anexo 3 se adjunta la propuesta de clasificación visual para vigas de madera aserrada de *Araucaria angustifolia* procedente de Eldorado, Misiones, realizada en el trabajo mencionado.

REFERENCIAS

- 1- Clasificación Visual Resistente de la *Araucaria angustifolia* procedente de Eldorado, Misiones, Argentina. Guillaumet AA et al.
- 2- Diseño de un método de clasificación visual de madera a utilizar en la fabricación de vigas laminadas. RITIM (Red de Instituciones de Desarrollo Tecnológico de la Industria Maderera Argentina). CTM (Centro Tecnológico de la Madera) CITEMA INTI (Centro de Investigación y Desarrollo para la Industria de la Madera y Afines Instituto Nacional de Tecnología Industrial) FCF UNAM (Facultad de Ciencias Forestales Universidad Nacional de Misiones) GEMA FRCU UTN (Grupo de Estudio de Maderas Facultad Regional de Concepción del Uruguay Universidad Tecnológica Nacional. http://www.sagpya.mecon.gov.ar
- 3- Tecnología de la madera en la construcción arquitectónica. Vignote Peña S et al.

BIBLIOGRAFIA

Comité Europeo de Normalización (1996) UNE-EN 338, Madera estructural. Clases resistentes. AENOR, Madrid.

Comité Europeo de Normalización (1995) UNE-EN 408, Estructuras de madera. Madera aserrada y madera laminada encolada para uso estructural. Determinación de algunas propiedades físicas y mecánicas. AENOR, Madrid.

Comité Europeo de Normalización (1997) UNE-EN 384, Madera estructural. Determinación de los valores característicos de las propiedades mecánicas y la densidad. AENOR, Madrid.

Comité Europeo de Normalización (1997) UNE-EN 1310, Madera aserrada y madera en rollo. Método de medida de las singularidades. AENOR, Madrid.

European Committee for standardization (2000b) Draft prEN 14081-1, Timber structures - Strength graded structural timber with rectangular cross section - Part 1: General requirements. CEN, Brussels.

Instituto Argentino de Racionalización de Materiales (1963) IRAM 9532, Maderas, Método de determinación de la humedad. IRAM, Buenos Aires.

Instituto Argentino de Racionalización de Materiales (1973) IRAM 9544, Maderas, Método de determinación de la densidad aparente. IRAM, Buenos Aires.

Instituto Argentino de Racionalización de Materiales (2002) IRAM 9670 de clasificación en grados de resistencia para la madera aserrada de pinos resinosos (Pino elliotti y Pino taeda) del noreste argentino mediante una evaluación visual. IRAM, Buenos Aires.

Instituto Argentino de Racionalización de Materiales (2005) IRAM 9662-1, Madera laminada encolada estructural. Clasificación visual de las tablas por resistencia. Parte 1: Tablas de pino Paraná (Araucaria angustifolia). IRAM, Buenos Aires.

Guillaumet AA et al. (2007) Clasificación Visual Resistente de la *Araucaria* angustifolia procedente de Eldorado, Misiones, Argentina". www.edutecne.utn.edu.ar/pino-parana/pino-parana.html

Piter, JC. (2003) Tesis Doctoral. Clasificación por Resistencia de la madera aserrada como material estructural. Desarrollo de un método para el Eucalyptus Grandis de Argentina.

Vignote Peña S. et al. (2000) Tecnología de la madera en la construcción arquitectónica. Editorial Mundi-Prensa. España

RITIM Clasificación visual de madera de pinos resinosos (Pinus taeda y elliotti) para uso estructural. Novenas Jornadas Técnicas Forestales. INTA-FCF-MEYRNRYT-Eldorado, Misiones, Argentina.

Coronel E. O. (1994) Fundamentos de las propiedades físicas y mecánicas de las maderas, 1º parte, fundamentos de las propiedades físicas de las maderas. Instituto de Tecnología de la Madera, Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero.

Coronel E. O. (1996) Fundamentos de las propiedades físicas y mecánicas de las maderas, 2º parte, fundamentos de las propiedades mecánicas de las maderas. Instituto de Tecnología de la Madera, Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero.

COLABORADORES

Miguel Quinodoz, Miguel Sosa, Perla Viglioni

Todos alumnos del último año de Ingeniería Civil de la Facultad Regional Venado Tuerto de la U.T.N. que participaron intensamente en la determinación de las inercias, tensiones de trabajo y la discusión de resultados.

AGRADECIMIENTOS

A los alumnos de Ingeniería Civil de la Facultad Regional Venado Tuerto, que participaron en las tareas de relevamiento de los defectos y los ensayos de laboratorio que sin su responsable y continua tarea no se podría haber completado el trabajo aquí publicado. Ellos son: Dutto Lucrecia, Gianinni Marianela, Ibarra José, Macerata Yanina, Quinodóz Miguel, Quiroga Mariana, Rabolini Sabrina, Romero Natalia, Sosa Miguel, Venturini Aldana y Viglioni Perla.

N° I	LARGO	BASE	CANTO	MOD. E. 12 %	FLEXION	DEN. 12%	MEDULA	N1	N2	N3	N4	N5
VIGA	mm	mm	mm	Nw/mm ²	Nw/mm ²	Kg/m ³		%	%	%	%	%
201	1620	44,6	91,3	9.858,69	30,89	472,19	NO	62,0%	62,0%	32,0%	30,0%	22,0%
202	1620	44,6	91,5	15.808,65	61,54	575,64	NO	32,0%	37,0%	18,0%	20,9%	25,4%
203	1620	45,0	91,7	14.541,67	36,44	492,26	NO	35,0%	35,0%	11,7%	6,5%	19,0%
204	1630	44,8	91,6	13.001,58	44,54	417,58	NO	36,0%	36,0%	20,0%	23,4%	25,9%
205	1630	45,2	91,6	15.427,47	60,55	490,36	NO	25,0%	25,0%	10,0%	13,0%	13,6%
206	1630	44,6	91,4	14.871,80	35,97	472,56	NO	28,0%	49,0%	43,0%	60,4%	40,4%
207	1630	44,6	91,8	8.362,95	29,41	488,05	SI	64,0%	64,0%	47,7%	31,8%	23,0%
208	1630	45,0	91,5	11.078,32	30,43	463,01	SI	60,0%	60,0%	39,7%	61,0%	47,8%
209	1630	44,2	91,4	11.767,40	45,13	456,41	SI	32,0%	32,0%	36,0%	38,0%	38,5%
210	1630	44,5	91,3	15.584,00	51,15	493,15	NO	25,0%	50,0%	30,3%	36,0%	38,0%
211	1630	44,4	91,2	10.826,20	29,88	478,00	SI	55,0%	81,0%	41,0%	47,8%	33,4%
212	1630	44,1	90,0	9.014,87	28,68	488,77	SI	88,0%	88,0%	52,7%	83,1%	59,1%
213	1630	44,7	91,0	18.962,79	56,42	539,56	NO	27,0%	48,0%	34,0%	21,0%	48,1%
214	1800	44,7	91,2	21.717,43	70,05	503,52	NO	19,0%	60,0%	34,7%	30,2%	21,7%
215	1800	44,4	91,3	18.530,32	80,64	580,70	NO	28,0%	35,0%	18,7%	20,4%	24,5%
216	1800	44,1	91,6	16.872,18	45,30	487,20	SI	76,0%	76,0%	23,3%	51,3%	30,4%
217	1800	44,8	91,4	13.654,35	44,63	458,58	NO	52,0%	60,0%	51,3%	56,4%	47,8%
218	1800	45,4	91,7	17.063,54	68,91	462,27	NO	49,0%	63,0%	36,0%	48,0%	40,0%
219	1800	44,3	91,6	14.080,16	55,07	550,99	NO	58,0%	68,0%	26,7%	43,9%	27,3%
220	1800	44,6	91,4	12.789,88	45,93	559,44	SI	38,0%	45,0%	20,0%	25,9%	13,2%
221	1800	44,0	105,9	14.872,25	52,15	529,71	NO	26,0%	26,0%	8,7%	0.0%	10,7%
222	1800	44,0	100,2	11.320,77	25,42	518,71	SI	38,0%	72,0%	56,3%	37,8%	47,0%
223	1800	43,9	100,0	14.330,09	32,35	499,09	NO	28,0%	50,0%	38,0%	65,1%	51,4%
224	1800	43,8	100,6	9.003,42	37,88	400,41	SI	46,0%	86,0%	44,0%	35,1%	35,7%
225	1800	43,3	99,4	9.758,80	21,67	458,94	SI	44,0%	76,0%	43,0%	67,8%	63,8%
226	1800	43,6	97,0	15.937,50	44,53	520,39	NO	19,0%	88,0%	22,7%	25,0%	16,1%
227	1800	43,6	98,4	16.328,59	41,87	532,33	NO	54,0%	68,0%	39,3%	66,3%	45,8%
228	1800	44,0	99,2	13.920,60	22,46	500,22	NO	28,0%	78,0%	43,0%	25,0%	38,8%
229	1800	44,1	99,1	15.317,71	34,32	493,82	SI	27,0%	47,0%	19,7%	25,8%	25,8%
230	1800	43,3	99,5	17.134,92	82,85	609,51	NO	0,0%	0,0%	0,0%	0,0%	0,0%
231	1800	43,9	98,7	13.274,92	73,01	576,93	NO	7,0%	7,0%	4,0%	1,2%	6,1%
232	1800	44,0	99,8	17.695,61	58,66	521,72	SI	9,0%	31,0%	14,7%	9,9%	5,8%
233	1800	43,8	99,0	16.143,96	60,21	481,41	NO	31,0%	37,0%	18,0%	30,4%	16,9%
234	1800	43,4	99,8	12.481,77	27,06	494,40	SI	32,0%	63,0%	55,7%	60,6%	59,5%
235	1800	44,0	99,3	11.507,04	36,12	456,72	SI	34,0%	40,0%	19,7%	10,7%	11,2%
236	1800	44,1	98,8	18.011,56	75,02	570,27	SI	12,0%	12,0%	7,3%	0,7%	5,1%
237	1800	43,6	100,1	10.100,81	40,85	473,59	SI	38,0%	45,0%	44,3%	42,7%	45,4%
238	1800	43,8	99,7	10.988,10		430,31	SI	34,0%	54,0%		27,3%	27.0%
239	1800	43,4	98,7	18.677,57	51,96	564,55	NO	36,0%	36,0%	9,7%	20,6%	14,9%
240	1800	44,4	98,8	11.957,26	47,71	595,14	NO	0,0%	0,0%	0,0%	0,0%	0,0%
241	1800	44,6	98,2	14.778,53	27,32	482,44	NO	28,0%	28,0%	23,3%	44,9%	24,2%
242	1800	43,4	98,3	18.596,16	63,09	571,15	SI	48,0%	73,0%	30,7%	26,8%	27,7%
243	1800	43,9	100,0	8.863,99	21,23	408,31	SI	39,0%	60,0%	50,7%	49,8%	48,1%
244	1800	44,2	98,3	14.455,52	59,20	541,11	NO	26,0%	37,0%	15,0%	26,3%	22,8%
245	1800	43,9	99,0	17.926,18	86,13	574,26	NO	6,0%	6,0%	2,3%	0,1%	0,1%
246	1800	43,6	99,2	17.141,65	72,68	514,28	NO	17,0%	17,0%	10,3%	0,0%	15,8%
247	1800	44,0	99,3	15.272,09	52,06	506,26	SI	18,0%	18,0%	11,0%	30,2%	16,6%
248	1800	44,3	99,8	9.637,82	25,56	407,98	SI	56,0%	77,0%	55,3%	40,1%	37,3%
249	1800	43,3	101,0	16.565,29	71,43	637,50	NO	0,0%	0,0%	0,0%	0,0%	0,0%
250	1800	43,9	100,4	10.022,03	35,52	482,04	SI	42,0%	42,0%	19,0%	16,6%	21,5%

Tabla 5: resumen los valores de los distintos criterios de nudosidad de la serie 3.

N°	LARGO	BASE	CANTO	MOD. E. 12 %	FLEXION	DEN. 12%	MEDULA	N1	N2	N3	N4	N5
VIGA	mm	mm	mm	Nw/mm ²	Nw/mm ²	Kg/m ³		%	%	%	%	%
301	2700	44,8	140,9	14.011,08	23,29	452,35	SI	46,0%	48,0%	32,3%	21,7%	25,4%
302	2700	43,7	140,8	15.664,79	64,71	514,64	NO	13,3%	22,7%	8,5%	8,6%	12,2%
303	2700	44,2	140,3	16.788,07	63,58	459,16	SI	6,7%	6,7%	2,5%	0,0%	3,6%
304	2700	44,0	141,2	14.892,88	42,46	539,02	NO	52,0%	55,3%	32,8%	44,8%	34,5%
305	2700	44,3	139,7	15.424,82	49,62	448,91	SI	42,0%	46,0%	31,3%	21,5%	25,1%
306	2700	44,7	139,8	13.817,45	54,69	395,04	SI	22,1%	43,3%	19,3%	4,3%	9,0%
307	2700	46,2	139,6	11.738,22	27,13	539,62	SI	52,0%	52,0%	17,8%	37,4%	30,7%
308	2700	45,0	139,9	9.573,91	37,72	455,11	NO	26,0%	47,3%	27,0%	18,3%	37,7%
309	2700	44,4	140,5	13.375,96	53,00	454,92	NO	23,3%	53,3%	20,0%	21,2%	28,2%
310	2700	43,3	140,1	15.467,47	47,28	467,15	SI	22,7%	42,0%	20,3%	28,5%	28,7%
311	2700	45,8	140,4	12.290,60	46,18	549,67	SI	36,0%	50,0%	26,3%	13,0%	17,1%
312	2700	44,5	140,3	18.904,95	80,80	545,28	SI	12,7%	17,3%	9,5%	1,2%	7,3%
313	2700	45,3	140,3	13.221,61	36,01	407,05	SI	10,0%	28,0%	15,8%	12,4%	20,9%
314	2700	43,6	140,7	8.151,98	18,97	392,19	SI	40,0%	36,7%	21,0%	36,0%	36,3%
315	2700	45,2	142,5	11.493,41	29,62	467,88	SI	30,7%	62,7%	52,5%	40,3%	45,9%
317	2700	44,8	140,1	9.665,50	36,27	481,11	NO	48,0%	58,7%	36,0%	53,1%	48,7%
318	2700	44,0	139,7	12.746,14	29,89	470,05	NO	38,0%	67,3%	40,3%	33,6%	33,4%
319	2700	45,0	140,5	12.737,75	44,77	439,23	SI	28,0%	28,0%	23,0%	21,9%	26,0%
320	2700	44,6	141,7	12.834,70	38,30	429,27	SI	25,3%	54,0%	35,0%	22,2%	24,5%
321	2700	44,5	144,1	18.318,38	71,28	554,55	NO	0,0%	0,0%	0,0%	0,0%	0,0%
322	2700	42,7	143,7	19.527,47	65,60	533,57	NO	15,3%	30,0%	11,3%	13,3%	15,8%
323	2700	43,3	143,5	13.910,41	38,47	522,36	SI	24,7%	48,7%	23,0%	4,4%	12,3%
324	2700	43,5	143,3	12.132,95	42,78	420,40	SI	41,3%	41,3%	30,0%	11,1%	21,7%
325	2700	44,3	143,5	16.252,26	64,55	461,46	SI	25,3%	39,3%	14,8%	6,9%	12,8%
326	2700	44,0	143,7	13.638,71	44,75	520,23	SI	12,7%	20,0%		11,8%	7,6%
327	2700	43,5	142,2	16.963,41	51,49	593,32	SI	21,3%	31,3%	14,3%	17,8%	31,7%
329	2700	43,6	143,0	15.439,28	54,11	475,62	NO	14,7%	24,7%	9,3%	1,4%	13,1%
330	2700	43,6	143,4	14.838,50	64,65	531,16	NO	40,0%	40,0%	8,8%	4,8%	6,0%
331	2700	43,2	143,0	15.863,38	51,48	570,39	NO	34,0%	0,3%	17,5%	5,5%	14,2%
332	2700	44,0	142,2	16.253,66	61,27	498,08	SI	9,3%	17,3%	6,5%	0,0%	9,1%
333	2700	43,0	143,5	13.683,53	42,83	454,47	SI	28,7%	62,0%	40,3%	18,0%	29,7%
334	2700	43,4	141,4	17.981,08	62,72	576,04	NO	17,3%	41,3%	17,8%	15,1%	25,0%
335	2700	43,3	143,0	13.842,91	49,27	449,82	NO	12,0%	22,7%	8,5%	11,4%	12,1%
336	2700	43,2	142,5	11.364,25	43,82	409,69	SI	38,0%	52,0%	36,5%	22,3%	30,1%
337	2700	43,8	143,7	16.963,98	65,59	514,55	NO	14,7% 21.3%	14,7%	0,1%	4,2%	7,7%
338	2700	42,9	142,0	16.445,35	56,26	584,49	NO	,	24,7%	20,0%	21,9%	13,1%
339 340	2700 2700	43,1	142,0 142,6	16.296,61	49,75	556,55	NO SI	16,7%	30,7% 27,3%	11,5%	7,7%	16,2%
	2700	43,0	,	17.678,66	50,84	584,39	NO	14,0%		10,3% 19,0%	3,7%	4,7%
341			138,0		33,46	489,79		24,7%			21,5%	23,7%
342 343	2700 2700	43,1 42,8	139,1 138,5	7.316,54 16.130,41	23,44 57,76	424,73 556,76	SI SI	58,0% 26,0%	47,3%	47,0% 26,5%	46,0% 10,7%	49,1% 22,0%
343	2700	42,6	139,2	12.770,75	35,45	522,40	SI	54,0%	64,7%	_	13,7%	40,9%
345	2700	43,4	139,2	10.474,85	35,45	522,40	SI	36,0%	36,0%		20,8%	19,9%
345	2700	43,3	138,3	7.888,39	19,05	459,96	SI	46,0%	72,7%		62,0%	58,4%
347	2700	43,1	139,7	11.509,12	19,05	401,47	SI	44,0%		37,8%	40,2%	38,5%
348	2700	43,0	139,7	13.989,47	30,86	483,14	SI	25,3%	58,7%		25,7%	36,8%
349	2700	43,4	139,2	5.638,88	31,60	520,54	SI	58,0%	58,0%		26,9%	32,0%
350	2700	43,1	138,2	8.244,31	30,03	400,18	SI	35,3%	46,0%		25,3%	21,9%
330	2100	43,1	100,2	0.244,31	30,03	400,10	Ji	JJ,J /0	+∪,∪ /0	20,070	20,0/0	41,370

Tabla 6: resumen los valores de los distintos criterios de nudosidad de la serie 4.

N°	LARGO	BASE	CANTO	MOD. E. 12 %	FLEXION	DEN. 12%	MEDULA	N1	N2	N3	N4	N5
VIGA	mm	mm	mm	Nw/mm ²	Nw/mm ²	Kg/m ³		%	%	%	%	%
401	2700	66,70	143,70	15.395,43	49,04	485,03	SI	46,7%	58,7%	32,7%	22,0%	26.2%
402	2700	67,30	143,80	13.538,36	45,58	492,63	SI	26,7%	52,0%	42,2%	31,3%	43,7%
403	2700	67,00	143,60	13.054,92	43,63	406,71	SI	28,0%	40,7%	37,6%	28,0%	34,1%
404	2700	66,80	143,50	13.924,00	56,24	459,88	SI	48,0%	48.0%	28,2%	15,9%	20,3%
405	2700	67,00	144,40	9.001,65	29,54	389,11	SI	44,0%	56,0%	34,9%	38,4%	37,5%
406	2700	67,49	143,80	12.502,19	36,05	405,84	SI	24,0%	24,0%	22,0%	6,3%	21,7%
407	2700	67,70	140,50	11.346,75	43,77	438,15	SI	28.0%	58.7%	29,3%	23,2%	31,9%
408	2700	67,10	140.60	9.153,59	29,45	446,29	SI	53,0%	83,3%	33,3%	31,3%	53,8%
409	2700	66,60	140,70	12.897,57	43,47	405,23	SI	25,3%	55,3%	32,7%	31.1%	38,4%
410	2700	67,00	142,40	11.536,34	49,97	414.31	SI	37,3%	54,7%	23,3%	35,7%	35,0%
411	2700	66,50	142,20	15.137,24	57,35	519,11	SI	20,0%	37,3%	14,2%	19,0%	18,0%
412	2700	63,83	140,15	16.267,59	65,75	581,37	SI	14,7%	46,7%	18,7%	5,8%	8,6%
413	2700	67,00	140,40	11.658,45	25,24	471,24	SI	48,0%	48,0%	32,2%	36,5%	30,3%
414	2700	67,50	139,95	15.226,94	53,70	446,51	SI	27,3%	48,0%	36,4%	28,7%	35,7%
415	2700	66,63	139,78	15.072,86	44,90	444,57	SI	26,7%	44,0%	32,9%	27,5%	33,8%
416	2700	68,17	141.55	7.128,62	31,81	402.06	SI	41,3%	82.7%	44,0%	29,4%	41,9%
417	2700	68,86	138,90	13.480,89	35,63	589,23	SI	34,0%	52,0%	24,0%	15,1%	14,8%
418	2700	68,70	141,50	13.920,62	61,97	574,90	SI	30,0%	60,7%	29,8%	13,9%	18,4%
419	2700	67,93	142,10	14.213,70	61,71	467.12	SI	20,0%	30,0%	17,6%	14,4%	14,2%
420	2700	68,30	141,60	16.153,67	61,32	520,62	SI	17,3%	24,0%	17,6%	19,1%	17,2%
421	2700	68,30	143,30	13.640,32	29,76	495,60	SI	30,7%	30,7%	25,6%	32,0%	37,2%
422	2700	68,30	141,70	15.311,63	61,79	594,50	SI	25,3%	31,3%	26,9%	25.9%	26,2%
423	2700	73,76	144,30	13.911.62	57,48	545,73	SI	17,3%	20,0%	12,7%	7,6%	10.2%
424	2700	73,17	145,55	12.526,65	41,49	430,63	NO	30,0%	64,0%	41,6%	34,0%	37,1%
425	2700	73,60	145,45	13.642,18	55,09	587,94	SI	21,3%	36,7%	19,1%	17,6%	18,4%
426	2700	74,73	145,00	16.714,08	60,38	583,39	SI	13,3%	22,7%	13,8%	15,6%	14,3%
427	2700	72,97	144,63	11.259,93	37,76	400,89	SI	14,7%	50,7%	33,3%	26,0%	30,3%
428	2700	73,97	144,60	11.696,54	45,58	481,67	SI	45,3%	45,3%	27,6%	21,4%	22,5%
429	2700	74,06	145,60	13.370,89	50,06	464,48	SI	18,0%	51,3%	26,7%	10,0%	16,5%
430	2700	74,01	146,00	14.585,84	47,60	472,45	SI	17,3%	54,7%	24,4%	13,7%	14,9%
431	2700	74,10	144,60	14.026,78	57,30	466,71	NO	20,7%	38,7%	16,9%	25,9%	23,3%
432	2700	68,40	141,60	9.703,99	22,03	386,00	SI	41,3%	60,0%	44,0%	35,1%	40,8%
433	2700	70,70	144,10	10.611,73	20,09	414,14	SI	42,7%	62,7%	45,1%	46,3%	40,9%
434	2700	66,00	138,40	14.869,95	48,66	448,54	SI	28.0%	33,3%	20,7%	19.4%	21.9%
435	2700	65,30	141,80	14.739,12	53,09	489,22	SI	29,3%	48,7%	22,9%	18,9%	22,7%
436	2700	66,06	141,90	11.815,86	40,61	508,26	SI	46,7%	52,7%	42,0%	40,9%	45,5%
437	2700	70,80	143,80	13.849,72	55,29	406,03	SI	16,0%	29,3%	16,0%	8,8%	13,4%
438	2700	70,50	142,90	9.854,18	17,46	381,67	SI	26,7%	53,3%	47,8%	30,8%	47,8%
439	2700	70,70		13.412,28	55,53	542,06	SI	19,3%	_	23,3%	,	20,5%
440	2700	70,10	139,00	12.903,33	49,85	480,42	SI	40,0%	54,0%		45,8%	43,2%
441	2700	74,66	144,00	13.242,98	48,03	467,83	SI	24,0%		33,1%	24,1%	35,7%
442	2700	70,71	143,46	9.091,28	29,24	376,76	SI	29,0%	50,7%		26,5%	41,7%
443	2700	70,29	144,04	12.355,22	55,21	425,61	SI	36,0%	58,0%		24,2%	24,7%
444	2700	70,67	143,86	15.561,88	51,06	547,35	NO	16,0%		18,2%	15,2%	17,3%
445	2700	70,18	144,09	14.286,94	51,23	453,74	NO	23,0%	38,7%		24,0%	28,8%
446	2700	71,02	143,36	17.731,24	56,75	430,56	SI	27,0%	27,0%		15,9%	18,9%
447	2700	66,70	141,50	11.663,06	60,03	539,93	SI	34,0%		32,0%	21,4%	24,5%
448	2700	66,00	141,70	4.953,20	18,94	360,12	NO	23,0%	43,3%		49,9%	34,8%
449	2700	65,50	141,65	14.520,71	52,42	431,92	SI	39,0%	69,3%		23,7%	24,3%
450	2700	65,70	140,7	16.510,24	51,68	517,78	SI	21,0%	_	16,9%	14,7%	17,2%

Tabla 7: resumen los valores de los distintos criterios de nudosidad de la serie 5.

ANEXO 2

N°	LARGO	BASE	CANTO	М	Jzg	Jyg	Jzy	Zg	Yg	Jmax	Jmin	FLEXION	MOD. E . 12 %
VIGA	mm	mm	mm	Nw mm	mm⁴	mm⁴	mm⁴	mm	mm	mm⁴	mm⁴	Nw/mm ²	Nw/mm²
301	2700	44,8	140,9	3.498.171	10.450.206	1.058.512	0	22,4	70,4			23,29	14.011
302	2700	43,7	140,8	9.462.167	10.165.018	979.187	0	21,9	70,4			64,71	15.665
303	2700	44,2	140,3	9.332.810	10.160.673	1.006.163	0	22,1	70,2			63,58	16.788
304	2700	44,0	141,2	6.276.687	10.310.547	998.919	0	22,0	70,6			42,46	14.893
305	2700	44,3	139,7	7.252.590	10.064.952	1.012.107	0	22,2	69,9			49,62	15.425
306	2700	44,7	139,8	8.076.566	10.177.657	1.040.515	0	22,4	69,9			54,69	13.817
307	2700	46,2	139,6	4.125.072	10.462.771	1.143.456	0	23,1	69,8			27,13	11.738
308	2700	45,0	139,9	5.612.314	10.261.441	1.062.770	0	22,5	69,9			37,72	9.574
309	2700	44,4	140,5	7.843.824	10.261.969	1.024.811	0	22,2	70,3			53,00	13.376
310	2700	43,3	140,1	6.789.334	9.922.499	947.808	0	21,7	70,1			47,28	15.467
311	2700	45,8	140,4	7.043.996	10.567.571	1.125.515	0	22,9	70,2			46,18	12.291
312	2700	44,5	140,3	11.955.329	10.241.222	1.030.283	0	22,3	70,2			80,80	18.905
313	2700	45,3	140,3	5.424.300	10.425.334	1.086.854	0	22,7	70,2			36,01	13.222
314	2700	43,6	140,7	2.763.872	10.116.011	972.251	0	21,8	70,3			18,97	8.152
315	2700	45,2	142,5	4.577.657	10.899.380	1.096.602	0	22,6	71,3			29,62	11.493
317	2700	44,8	140,1	5.388.509	10.266.234	1.049.762	0	22,4	70,1			36,27	9.665
318	2700	44,0	139,7	4.335.422	9.983.792	990.653	0	22,0	69,8			29,89	12.746
319	2700	45,0	140,5	6.715.283	10.400.644	1.066.922	0	22,5	70,3			44,77	12.738
320	2700	44,6	141,7	5.778.766	10.569.839	1.046.186	0	22,3	70,9			38,30	12.835
321	2700	44,5	144,1	11.066.565	11.096.109	1.058.188	0	22,3	72,1			71,28	18.318
322	2700	42,7	143,7	9.724.174	10.558.858	932.307	0	21,4	71,9			65,60	19.527
323	2700	43,3	143,5	5.768.118	10.662.581	970.810	0	21,7	71,8			38,47	13.910
324	2700	43,5	143,3	6.428.092	10.667.105	982.953	0	21,8	71,7			42,78	12.133
325	2700	44,3	143,5	9.901.397	10.908.830	1.039.637	0	22,2	71,8			64,55	16.252
326	2700	44,0	143,7	6.834.618	10.880.322	1.020.078	0	22,0	71,9			44,75	13.639
327	2700	43,5	142,2	7.629.142	10.423.337	975.408	0	21,8	71,1			51,49	16.963
329	2700	43,6	143,0	8.118.143	10.624.619	987.675	0	21,8	71,5			54,11	15.439
330	2700	43,6	143,4	9.747.558	10.714.026	990.438	0	21,8	71,7			64,65	14.838
331	2700	43,2	143,0	7.651.653	10.527.145	960.740	0	21,6	71,5			51,48	15.863
332	2700	44,0	142,2	9.182.797	10.543.146	1.009.430	0	22,0	71,1			61,27	16.254
333	2700	43,0	143,5	6.377.719	10.588.707	950.771	0	21,5	71,8			42,83	13.684
334	2700	43,4	141,4	9.178.765	10.224.844	963.246	0	21,7	70,7			62,72	17.981
335	2700	43,3	143,0	7.341.022	10.551.514	967.428	0	21,7	71,5			49,27	13.843
336	2700	43,2	142,5	6.472.659	10.417.106	957.381	0	21,6	71,3			43,82	11.364
337	2700	43,8	143,7	9.971.672	10.830.866	1.006.231	0	21,9	71,9			65,59	16.964
338	2700	42,9	142,0	8.200.276	10.236.255	934.284	0	21,5	71,0			56,26	16.445
339	2700	43,1	142,0	7.286.040	10.283.976	947.412	0	21,6	71,0			49,75	16.297
340	2700	43,0	142,6	7.484.907	10.390.723	944.808	0	21,5	71,3			50,84	17.679
341	2700	43,4	138,0	4.686.957	9.504.860	940.085	0	21,7	69,0			33,46	12.171
342	2700	43,1	139,1	3.307.247	9.666.682	928.064	0	21,6	69,6			23,44	7.317
343	2700	42,8	138,5	8.030.623	9.475.712	904.898	0	21,4	69,3			57,76	16.130
344	2700	43,4	139,2	5.043.568	9.754.976	948.259	0	21,7	69,6			35,45	12.771
345	2700	43,3	138,3	5.011.208	9.544.940	935.631	0	21,7	69,2			35,72	10.475
346	2700	44,6	138,3	2.752.172	9.831.508	1.022.458	0	22,3	69,2			19,05	7.888
347	2700	43,1	139,7	2.730.460	9.792.312	932.067	0	21,6	69,9			19,20	11.509
348	2700	43,0	139,2	4.350.487	9.665.068	922.281	0	21,5	69,6			30,86	13.989
349	2700	43,4	139,2	4.495.660	9.754.976	948.259	0	21,7	69,6			31,60	5.639
350	2700	43,1	138,2	4.190.657	9.486.124	923.771	0	21,6	69,1			30,03	8.244

Tabla 8: momentos de inercia y coordenadas del baricentro considerando la sección bruta de las vigas de la serie 4. Tensiones resultantes y módulo de elasticidad.

ANEXO 2

Ν°	LARGO	BASE	CANTO	M	Jzg	Jyg	Jzy	Zg	Yg	Jmax	Jmin	FLEXION	MOD. E . 12 %
VIGA	mm	mm	mm	Nw mm	mm⁴	mm⁴	mm⁴	mm	mm	mm ⁴	mm ⁴	Nw/mm ²	Nw/mm ²
301	2700	44,8	140.9	3.498.171	7.131.526	561.056	609.603	19,1	77,9	7.187.606	504.976	56,53	20.531
302	2700	43.7	140.8	9.462.167	10.005.658	920.951	-127.916	24,0	71,5	10.007.459	919.150	70,00	15.914
303	2700	44.2	140,3	9.332.810	10.066.168	962.508	-19.380	22,5	70,4	10.066.209	962.466	64,78	16.946
304	2700	44.0	141,2	6.276.687	5.770.096	658.652	-37.408	26,9	68,3	5.770.370	658.378	79,43	26.612
305	2700	44,3	139,7	7.252.590	8.038.436	862.531	-36.438	23,0	78,1	8.038.621	862.346	70,38	19.313
306	2700	44.7	139.8	8.076.566	9.942.368	908.926	51.270	22,1	71,8	9.942.659	908.635	58,53	14.144
307	2700	46.2	139.6	4.125.072	7.712.289	879.881	65.306	22.7	79,3	7.712.913	879.257	42,75	15.924
308	2700	45,0	139,9	5.612.314	8.877.131	809.415	96.589	22,0	76,5	8.878.287	808.259	49,47	11.067
309	2700	44,4	140,5	7.843.824	9.670.922	816.012	153.563	25,3	67,8	9.673.584	813.349	62,16	14.193
310	2700	43,3	140,1	6.789.334	8.451.902	651.181	189.583	23,0	63,6	8.456.507	646.576	66,31	18.159
311	2700	45,8	140,4	7.043.996	9.045.750	795.234	-384.609	22,5	70,7	9.063.640	777.344	64,03	14.358
312	2700	44,5	140,3	11.955.329	9.155.760	920.859	182.062	21,4	74,7	9.159.783	916.836	102,51	21.146
313	2700	45,3	140,3	5.424.300	10.081.579	878.397	15.275	21,2	70,3	10.081.604	878.372	37,54	13.672
314	2700	43,6	140,7	2.763.872	6.171.654	648.961	-227.266	20,3	67,9	6.180.991	639.624	36,26	13.362
315	2700	45,2	142,5	4.577.657	5.127.103	373.100	-166.761	22,1	89,7	5.132.946	367.258	89,32	24.433
317	2700	44,8	140,1	5.388.509	4.927.767	551.334	-15.624	23,2	72,2	4.927.823	551.278	78,59	20.137
318	2700	44,0	139,7	4.335.422	6.755.940	605.220	234.663	19,1	71,1	6.764.880	596.280	51,80	18.836
319	2700	45,0	140,5	6.715.283	8.891.003	908.838	217.021	21,4	72,3	8.896.899	902.942	58,45	14.901
320	2700	44,6	141,7	5.778.766	7.683.429	594.614	58.912	18,8	69,1	7.683.918	594.124	55,41	17.656
321	2700	44,5	144,1	11.066.565	11.096.109	1.058.188	0	22,3	72,1	11.096.109	1.058.188	71,28	18.318
322	2700	42,7	143,7	9.724.174	8.642.083	734.649	-245.415	23,4	75,7	8.649.692	727.040	94,00	23.859
323	2700	43,3	143,5	5.768.118	9.753.335	682.572	109.869	19,9	73,9	9.754.666	681.242	45,61	15.207
324	2700	43,5	143,3	6.428.092	9.029.101	759.549	22.009	20,7	75,1	9.029.159	759.490	53,48	14.334
325	2700	44,3	143,5	9.901.397	10.126.124	808.966	149.653	25,5	69,2	10.128.527	806.563	76,79	17.508
326	2700	44,0	143,7	6.834.618	9.881.087	973.005	-283.149	23,6	74,8	9.890.078	964.014	56,44	15.018
327	2700	43,5	142,2	7.629.142	8.658.993	710.734	-168.129	22,9	77,9	8.662.548	707.179	72,98	20.420
329	2700	43,6	143,0	8.118.143	10.296.859	935.265	-12.625	20,9	71,1	10.296.876	935.248	56,41	15.931
330	2700	43,6	143,4	9.747.558	9.542.464	878.393	-142.469	21,7	73,1	9.544.806	876.051	77,80	16.660
331	2700	43,2	143,0	7.651.653	9.275.043	754.820	257.447	20,2	74,2	9.282.815	747.048	67,64	18.005
332	2700	44,0	142,2	9.182.797	10.505.188	1.002.328	-73.644	23,1	72,3	10.505.759	1.001.757	64,02	16.312
333	2700	43,0	143,5	6.377.719	7.776.984	417.546	326.156	19,8	81,7	7.791.411	403.120	83,95	18.631
334	2700	43,4	141,4	9.178.765	8.119.791	679.074	-314.865	24,1	76,3	8.133.091	665.773	99,47	22.643
335	2700	43,3	143,0	7.341.022	9.502.544	791.446	175.766	19,8	74,1	9.506.089	787.901	60,94	15.371
336	2700	43,2	142,5	6.472.659	7.589.358	503.646	13.537	22,8	78,0	7.589.384	503.620	66,27	15.599
337	2700	43,8	143,7	9.971.672	10.338.300	991.222	-185.192	23,5	73,8	10.341.968	987.554	75,02	17.772
338	2700	42,9	142,0	8.200.276	9.144.655	864.944	-190.478	20,7	68,0	9.149.034	860.564	70,29	18.408
339	2700	43,1	142,0	7.286.040	9.513.806	744.782	74.786	19,3	72,4	9.514.443	744.144	56,70	17.616
340	2700	43,0	142,6	7.484.907	9.317.069	763.902	-126.204	19,6	66,9	9.318.931	762.040	63,39	19.716
341	2700	43,4	138,0	4.686.957	7.196.842	630.785	-138.059	19,3	73,2	7.199.744	627.883	49,78	16.075
342	2700	43,1	139,1	3.307.247	5.218.194	419.674	-34.129	23,7	72,9	5.218.436	419.431	46,72	13.554
343	2700	42,8	138,5	8.030.623	8.925.400	745.939	-152.278	22,1	69,4	8.928.234	743.105	65,71	17.125
344	2700	43,4	139,2	5.043.568	5.196.004	349.895	114.566	26,3	78,0	5.198.711	347.188	80,55	23.976
345	2700	43,3	138,3	5.011.208	7.546.057	736.299	47.420	20,8	74,8	7.546.387	735.969	49,86	13.250
346	2700	44,6	138,3	2.752.172	5.855.712	753.761	-144.472	19,3	69,7	5.859.800	749.673	34,13	13.244
347	2700	43,1	139,7	2.730.460	5.815.768	536.582	-599.784	19,6	72,6	5.883.053	469.296	49,47	19.379
348	2700	43,0	139,2	4.350.487	5.278.757	541.862	-70.347	19,8	79,4	5.279.802	540.818	66,67	25.614
349	2700	43,4	139,2	4.495.660	5.239.705	719.432	-10.101	21,5	53,4	5.239.727	719.410	72,79	10.498
350	2700	43,1	138,2	4.190.657	7.184.525	609.718	-475.414	22,7	75,1	7.218.724	575.519	56,16	10.885

Tabla 9: momentos de inercia y coordenadas del baricentro considerando en la sección de las vigas de la serie 4 los nudos como vacíos. Tensiones resultantes y módulo de elasticidad.

ANEXO 2

N°	LARGO	BASE	CANTO	M	Jzg	Jyg	Jzy	Zg	Yg	Jmax	Jmin	FLEXION	MOD. E . 12 %
VIGA	mm	mm	mm	Nw mm	mm ⁴	mm⁴	mm⁴	mm	mm	mm ⁴	mm⁴	Nw/mm ²	Nw/mm ²
301	2700	44,8	140,9	3.498.171	7.481.516	677.307	574.328	19,8	81,0	7.529.653	629.170	50,51	19.571
302	2700	43,7	140,8	9.462.167	10.012.509	967.773	-139.648	23,5	71,7	10.014.664	965.617	70,18	15.903
303	2700	44,2	140,8	9.332.810	10.012.509	979.230	-17.400	22,7	70,4	10.066.560	979.196	64,75	16.945
304	2700	44,0	141,2	6.276.687	7.901.738	854.810	-450.853	24,7	77,1	7.930.466	826.082	72,94	19.433
305	2700	44,3	139,7	7.252.590	8.042.400	880.201	-44.023	22,9	78,2	8.042.670	879.930	70,57	19.433
306	2700	44,7	139,8	8.076.566	9.944.731	943.299	57.981	22,5	71,8	9.945.105	942.925	58,64	14.141
307	2700	46,2	139,6	4.125.072	7.712.289	879.881	65.306	22,7	79,3	7.712.913	879.257	42,75	15.924
308	2700	45,0	139,9	5.612.314	8.879.261	825.118	102.115	22,2	76,6	8.880.556	823.823	49,55	11.064
309	2700	44,4	140,5	7.843.824	10.165.962	982.806	-81.779	23,4	71,2	10.166.690	982.078	55,70	13.502
310	2700	43,3	140,1	6.789.334	9.689.812	834.738	-35.096	21,9	70,4	9.689.951	834.599	49,33	15.839
311	2700	45,8	140,4	7.043.996	9.542.519	875.290	-199.879	23,3		9.547.126	870.683	57,44	13.611
312	2700	44,5	140,3	11.955.329	9.155.760	920.859	182.062	21,4	74,7	9.159.783	916.836	102,51	21.146
313	2700	45,3	140,3	5.424.300	10.156.116	958.214	83.685	22,0	71,2	10.156.877	957.453	38,60	13.572
314	2700	43,6	140,7	2.763.872	8.015.670	828.793	156.220	22,4	79,0	8.019.064	825.399	28,34	10.288
315	2700	45,2	142,5	4.577.657	5.245.670	507.079	-115.493	22,6	91,6	5.248.483	504.265	84,00	23.881
317	2700	44,8	140,1	5.388.509	6.650.813	718.330	85.226	22,7	83,8	6.652.037	717.106	69,17	14.920
318	2700	44,0	139,7	4.335.422	8.043.531	764.078	480.248	20,9	77,8	8.075.078	732.531	50,95	15.821
319	2700	45,0	140,5	6.715.283	9.129.983	967.873	157.938	21,4	73,9	9.133.038	964.818	56,64	14.511
320	2700	44,6	141,7	5.778.766	8.980.915	702.763	298.355	19,9	75,2	8.991.654	692.024	55,30	15.105
321	2700	44,5	144,1	11.066.565	11.096.109	1.058.188	0	22,3	72,1	11.096.109	1.058.188	71,28	18.318
322	2700	42,7	143,7	9.724.174	8.698.311	814.174	-291.413	22,3	76,5	8.709.067	803.417	94,83	23.704
323	2700	43,3	143,5	5.768.118	9.764.651	721.254	128.151	20,3	74,1	9.766.467	719.438	45,88	15.190
324	2700	43,5	143,3	6.428.092	9.054.907	819.002	55.137	21,5	75,6	9.055.277	818.633	54,23	14.293
325	2700	44,3	143,5	9.901.397	10.651.861	991.222	-102.762	23,5	72,7	10.652.954	990.129	69,25	16.644
326	2700	44,0	143,7	6.834.618	9.881.087	973.005	-283.149	23,6	74,8	9.890.078	964.014	56,44	15.018
327	2700	43,5	142,2	7.629.142	8.658.993	710.734	-168.129	22,9	77,9	8.662.548	707.179	72,98	20.420
329	2700	43,6	143,0	8.118.143	10.617.613	1.001.874	115.697	21,7	72,9	10.619.005	1.000.482	57,17	15.449
330	2700	43,6	143,4	9.747.558	9.542.464	878.393	-142.469	21,7	73,1	9.544.806	876.051	77,80	16.660
331	2700	43,2	143,0	7.651.653	9.277.768	787.026	258.156	20,3	74,3	9.285.610	779.184	67,45	18.000
332	2700	44,0	142,2	9.182.797	10.505.188	1.002.328	-73.644	23,1	72,3	10.505.759	1.001.757	64,02	16.312
333	2700	43,0	143,5	6.377.719	7.887.509	531.996	318.679	19,7	83,5	7.901.290	518.215	80,00	18.370
334	2700	43,4	141,4	9.178.765	8.212.285	765.825	-387.333	23,0	77,5	8.232.378	745.732	100,80	22.388
335	2700	43,3	143,0	7.341.022	9.511.939	829.310	190.374	20,3	74,3	9.516.111	825.138	61,15	15.356
336	2700	43,2	142,5	6.472.659	7.913.798	613.565	-164.096	21,2	80,7	7.917.485	609.878	70,31	14.959
337	2700	43,8	143,7	9.971.672	10.338.300	991.222	-185.192	23,5	73,8	10.341.968	987.554	75,02	17.772
338	2700	42,9	142,0	8.200.276	10.073.329	896.461	9.637	21,3	71,3	10.073.339	896.451	57,62	16.711
339	2700	43,1	142,0	7.286.040	9.643.723	841.344	165.886	20,4	73,7	9.646.848	838.219	58,64	17.379
340	2700	43,0	142,6	7.484.907	10.197.944	867.283	17.338	20,8	71,4	10.197.976	867.251	52,22	18.013
341	2700	43,4	138,0	4.686.957	7.460.631	752.743	11.747	21,0	75,5	7.460.652	752.723	46,86	15.506
342	2700	43,1	139,1	3.307.247	6.717.850	497.831	-234.919	22,7	84,6	6.726.710	488.971	47,00	10.528
343	2700	42,8	138,5	8.030.623	8.975.715	795.441	-129.524	22,1	69,9	8.977.765	793.391	64,92	17.029
344	2700	43,4	139,2	5.043.568	7.129.279	816.731	-20.533	25,2	90,9	7.129.346	816.664	63,82	17.474
345	2700	43,3	138,3	5.011.208	7.546.057	736.299	47.420	20,8	74,8	7.546.387	735.969	49,86	13.250
346	2700	44,6	138,3	2.752.172	7.560.766	860.074	178.676	20,8	77,0	7.565.527	855.313	29,50	10.258
347	2700	43,1	139,7	2.730.460	7.028.357	688.178	-217.669	22,2	80,4	7.035.821	680.714	33,79	16.035
348	2700	43,0	139,2	4.350.487	5.903.613	676.932	135.475	20,6	83,3	5.907.122	673.423	64,01	22.903
349	2700	43,4	139,2	4.495.660	9.718.124	893.625	-549	21,3	70,0	9.718.124	893.625	31,91	5.660
350	2700	43,1	138,2	4.190.657	7.283.534	705.382	-423.630	23,0	76,0	7.310.703	678.213	52,71	10.737

Tabla 10: momentos de inercia y coordenadas del baricentro considerando en la sección de las vigas de la serie 4 los nudos de la zona traccionada como vacíos. Tensiones resultantes y módulo de elasticidad.

PROPUESTA PARA LA CLASIFICACIÓN VISUAL DE VIGAS DE MADERA ASERRADA DE ARAUCARIA ANGUSTIFOLIA, REALIZADA EN LA PUBLICACIÓN: "CLASIFICACIÓN VISUAL RESISTENTE DE LA ARAUCARIA ANGUSTIFOLIA PROCEDENTE DE ELDORADO, MISIONES, ARGENTINA". www.edutecne.utn.edu.ar/pino-parana/pino-parana.html

DEFECTOS ADMISIBLES	CLASE RESIST	FENTE DE ACUEI UNE-EN 338:1995	
	C40	C24	C18
Médula	No se admite	Se admite	Se admite
Grupo de nudos (1)	Menor a 40%	Menor a 60 %	Mayor a 60%
Longitud máxima de fisuras		on una profundidad m	enor al 50 % del
que no atraviesan la pieza (2)	grosor de la pieza		
		metro o ¼ de la	Se admite hasta 1,5
	longitud de la pieza,	lo que resulte menor	metros o ½ de la
			longitud de la pieza, lo que
			resulte menor
Longitud máxima de fisuras	Solo se admiten en	los extremos de la	Se admite hasta 1
que atraviesan la pieza (2)	pieza y con una l	ongitud menor a la	metro o ¼ de la
	anchura de la misma		longitud de la
			pieza, lo que
			resulte menor. En
			los extremos de la
			pieza de admiten con longitud menor
			a dos veces la
			anchura.
Deformación previa de	10 mm /	2000 mm	20 mm / 2000 mm
curvatura longitudinal de			
cara			
Deformación previa de	8 mm / 2	2000 mm	12 mm / 2000 mm
curvatura longitudinal de			
canto Deformación previa de	1 mm / 25 m	m de anchura	2 mm / 25 mm de
alabeo	1 111111 / 23 111	iii de alicilura	anchura
Deformación previa de		Sin restricciones	
curvatura transversal			
Ataque activo de insecto		No se admite	
Arista faltante		anchura ni el grosor a	menos de 2/3 de su
	dimensión básica.		
(1) En porcentaje de la dimen-			
(2) Los límites establecidos se	refieren a la suma de	las fisuras que present	a la viga.

VALORES CARACTERÍSTICOS DE CLASES RESISTENTES SEGÚN UNE-EN 338:1995										
		C40	C24	C18						
PROPIEDADES RESISTENTES EN N/mm ²										
Flexión	$f_{m,k}$	40,00	24,00	18,00						
Tracción paralela	$f_{t,O,k}$	24,00	14,00	11,00						
Tracción perpendicular	$f_{t,90,k}$	0,40	0,40	0,30						
Compresión paralela	$f_{c,O,k}$	26,00	21,00	18,00						
Compresión perpendicular	f _{c,90,k}	6,30	5,30	4,80						
Cortante	$f_{v,k}$	3,80	2,50	2,00						
PROPIEDADES DE RIGIDEZ EN kN/mm²										
Módulo de Elasticidad paralelo medio	E _{0,medio}	14,00	11,00	9,00						
Módulo de Elasticidad paralelo 5º percentil	E _{0,05}	9,40	7,40	6,00						
Módulo de Elasticidad perpendicular medio	E _{90,medio}	0,47	0,37	0,30						
Módulo cortante medio	G medio	0,88	0,69	0,56						
DENSIDAD EN Kg/m ³		•								
Densidad	ρ_k	420	350	320						
Densidad media	$ ho_{ extit{medio}}$	500	420	380						