ANÁLISIS NUMÉRICO DE UN PROBLEMA DE DETERIORO ESTRUCTURAL CAUSADO POR LA CORROSIÓN EN LAS ARMADURAS DEL HORMIGÓN ARMADO

Sebastian Toro

Grupo de Investigación en Métodos Numéricos en Ingeniería (GIMNI) Santa Fe - Argentina

Dr. Pablo Sánchez

Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC) y GIMNI Santa Fe - Argentina

Dr. Alfredo Huespe

Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC) Santa Fe - Argentina

1. Resumen

En este trabajo se estudia el comportamiento mecánico de elementos estructurales de hormigón armado sometidos al deterioro debido a la corrosión de la armadura.

La corrosión en las armaduras produce dos fenómenos mecánicos importantes:

- expansión volumétrica de las armaduras, debido a la acumulación de los productos de la corrosión, que genera un estado de tracción en el concreto que recubre la barra, produciendo una condición de daño y agrietamiento en ese material, y por lo tanto, una pérdida de sección neta de hormigón y de adherencia con el acero;
- pérdida de material de la barra, que disminuye la sección neta de la misma.

Ambos fenómenos y su interacción producen un efecto notable en el deterioro estructural, y por tal motivo se propone un estudio numérico a un nivel mesoscópico utilizando un procedimiento específico de elementos finitos, que se describe en el trabajo.

Los resultados de cargas últimas determinados para dos tipos de vigas, y deterioradas por distintos niveles de corrosión generalizada de la armadura longitudinal, se comparan con ensayos experimentales extraídos de las Ref. ^{1 y 4}.

Palabras Claves: Deterioro estructural, análisis de fractura, mecánica computacional de falla de materiales.

Abstract:

In this work, we analyze the mechanical response of reinforced concrete structural components undergoing a corrosion process in the reinforcement bars. Two mechanical effects are produced by this corrosion process:

- the volumetric increment of the reinforcement bars, due to the corrosion product (rust) accumulation; this effect generates a traction state into the cover concrete inducing damage state, and therefore, concrete net section loss;
- bar section reduction.

Both phenomena, and their interaction, produce a notably structural degradation.

And they have been numerically simulated by using a finite element methodology. That is described in the present work. Structural limit loads of beams with different rebar configurations and corrosion attack degrees are compared.

Keywords: Structural degradation; fracture analysis; computational material failure

2. Introducción

2.1. El hormigón armado y la corrosión

El hormigón armado es un material ampliamente usado en estructuras resistentes, principalmente en nuestro país. Son conocidas las buenas propiedades en ese sentido, pero también lo son los problemas típicos que presenta en servicio. Uno de los más importantes es la corrosión de la armadura, que puede producir desde problemas estéticos hasta fisuras, desprendimiento de material, y llegar al colapso del elemento estructural. Problemas que además de las consecuencias en la seguridad y sentido de confiabilidad en la estructura, producen menor rendimiento económico de la misma ya que disminuye su vida útil, aumentan los gastos de mantenimiento por evaluaciones y controles, y posteriores reparaciones o reemplazos que se deban realizar.

De esto surge la importancia que poseen los estudios sobre los efectos que produce la corrosión sobre las estructuras de hormigón armado, ya sea sobre como prevenir o solucionar los problemas que de ella proviene, o como en este trabajo, análisis del proceso de la degradación del hormigón armado con corrosión. Esto puede ser de utilidad para, una vez establecido el nivel de corrosión de la estructura, determinar si la misma puede mantenerse en servicio con un nivel confiable de seguridad, o si ya es prioritario la reparación o reemplazo de ésta. También ofrece una herramienta para un mejor entendimiento de la degradación de las estructuras.

2.2. Fenómeno físico-químico de la corrosión

La barra de acero embebida en el hormigón, además de estar protegida por una barrera física (recubrimiento) que la separa del medio ambiente, queda cubierta por una *película pasiva* (capa de óxidos muy adherente y compacta), de alta alcalinidad, que evita la corrosión de la armadura. Esta película puede disolverse (fenómeno conocido como *despasivación*), localmente o en toda la superficie de la barra, principalmente por dos mecanismos. Uno es la disminución de la alcalinidad del medio (pH < 9), ya sea debido a la carbonatación del recubrimiento de hormigón o por la lixiviación del hidróxido de calcio y de los álcalis. La otra es por la presencia de cloruros. ⁵

Todos estos procesos se ven acelerados por la presencia de fisuras, recubrimientos porosos o de poco espesor, y también por estar la estructura en contacto con un medio ambiente agresivo (variaciones del contenido de humedad del medio que rodea la estructura, presencia de sales agresivas, etc.). En general, estos factores a su vez se producen en forma más agresiva en hormigones de poca calidad, como por ejemplo en aquellos que tienen una alta relación agua-cemento (mayor contracción de fraguado, mayor porosidad, etc.), presencia de materiales agresivos, armado incorrecto (mala distribución de las microfisuras de plastificación), pocos controles en la fabricación, técnicas constructivas incorrectas, condiciones ambientales exigentes, etc.

Una vez que se ha despasivado la armadura, y en presencia de agua y oxígeno en la cantidad necesaria, comienza el fenómeno electrolítico de la corrosión de las barras de acero. Mientras que dichas condiciones se mantengan, la corrosión prosigue, y por lo tanto se disuelve gradualmente el hierro formando los residuos de la corrosión (herrumbre). Estos residuos tienen mayor volumen que el original por lo que ocasionan tensiones de tracción en el hormigón que rodea la barra, que lleva a la formación de las fisuras y desprendimientos del recubrimiento. ⁵

Los efectos mecánicos más relevantes, inducidos por el proceso de corrosión en las armaduras y que modifican sus propiedades, son los siguientes:

- Disminución de la sección de la armadura de acero, debido a la pérdida de material, ya sea por ej. en los estribos o barras longitudinales.
- Microfisuración, fisuración y desprendimientos en el hormigón, que hacen perder rigidez y resistencia al mismo, y que a su vez aceleran el proceso corrosivo.
- Pérdida de la adherencia de la barra de acero con el hormigón, debido a la degradación de este último y su separación física de la barra debido a su expansión.

En la Figura 1(a) se muestra la reducción de la sección de armadura y el incremento del volumen de la barra. En la Figura 1(c) se indican dos formas típicas de fisuración y desprendimiento que se producen al expandirse la barra: 1) delaminación y 2) fisura inclinada ⁶.

2.3. Desarrollo del trabajo

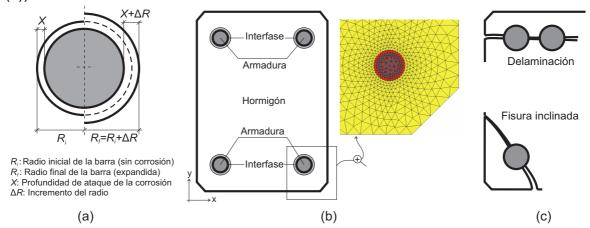
En este trabajo se analizó el proceso de corrosión de la armadura, su efecto sobre el comportamiento mecánico del elemento estructural y su influencia en el valor de la carga última. Se considera que la corrosión afecta, principalmente, en forma generalizada toda la barra, aunque con este modelo se podría también estudiar el caso de corrosión localizada (*pitting*).

En este sentido se describe un método numérico para determinar la evolución de los mecanismos de degradación. Este se dividió en tres partes:

- Análisis en la sección transversal del elemento estructural: en esta se simula la expansión debido al incremento de volumen de la barra. Éste utiliza la hipótesis de deformación plana. De este estudio se determina la distribución del daño y el patrón de fisuración del hormigón. Ver Sección 3.1.
- Estrategia de transferencia del daño: En esta parte se utiliza la información de daño obtenida del paso anterior y se la transfiere en forma consistente como daño inicial de la siguiente etapa. Ver Sección 3.3.
- Análisis a nivel del modelo estructural: Considerando los resultados de los análisis previos, se evalúa la respuesta estructural de un elemento sujeto a un sistema externo de cargas. Se utiliza la hipótesis de tensión plana. Con esta evaluación se determina la respuesta global y el mecanismo de falla macroscópico. Ver Sección 3.2.

En definitiva, se resuelve un problema netamente tridimensional a partir de la resolución de dos problemas bidimensionales.

En cada etapa se consideraron los efectos mecánicos de la expansión de la barra de acero sobre las propiedades de los materiales indicados en la sección 2.2, asumiendo que el hormigón armado ésta compuesto por tres dominios diferenciados. Uno representando el hormigón, otro el acero, y además, simulando la adherencia entre ambos, un llamado material de contacto. En todos los casos se utilizó la teoría de elementos finitos con elementos bidimensionales.


Cómo validación del método se utilizaron los ensayos de vigas simplemente apoyadas obtenidos de Rodriguez *et al.* ¹ y también se utilizaron los resultados numéricos obtenidos por Coronelli *et al.* ⁴. Este último trabajo se utilizó como base para este y para la caracterización de los materiales. Ver Sección 4.

3. Modelos numéricos

3.1. Análisis mesoscópico en la sección transversal del elemento estructural

En esta sección se describen los modelos constitutivos de cada dominio o material en que se dividió la sección transversal del elemento. Cada modelo tiene en cuenta los principales mecanismos de deterioro por la corrosión indicados en la sección 2.2, además de los propios del material en cuestión. En la Figura 1(b) se observan estos dominios, con un modelado de elementos finitos posible.

En este trabajo la profundidad de corrosión se mide con la variable X, que es la disminución del radio de la barra al corroerse, y la expansión se indica como ΔR , que es el aumento del radio de una supuesta expansión isótropa radial (ver Figura 1(a)).

Figura 1: Sección transversal del elemento estructural. Modelo 2D con hipótesis de estado plano de deformaciones. (a) Mecanismo de corrosión y expansión. (b) Detalle del modelo numérico. (c) Formas típicas de fisuración al expandirse la armadura.

3.1.1. Modelo constitutivo del hormigón

El modelo constitutivo que se adoptó para analizar el hormigón es un modelo de daño isótropo regularizado con una cinemática que admite discontinuidades fuertes (es decir, discontinuidades en el campo de desplazamientos). Esta es una herramienta que permite el modelado de fisuras. Se ha demostrado que esta técnica es flexible y suficientemente robusta para simular distintos patrones de fisuración en sólidos, similar a los observados en estructuras de hormigón armado en etapas avanzadas de deterioro (para material teórico adicional se puede consultar en las Ref. ^{7,8 y 9}).

Este modelo es implementado con elementos finitos que enriquecen el desplazamiento continuo estándar agregando modos de desplazamientos discontinuos (grados de libertad extras). Esto permite capturar la trayectoria de la fisura en el interior del elemento sin importar el tamaño y la orientación de los mismos. En particular se utilizan elementos finitos tipo E-FEM (Figura 2), que permiten la condensación de los grados libertad extras, no aumentado el tamaño del sistema de ecuaciones. ¹¹

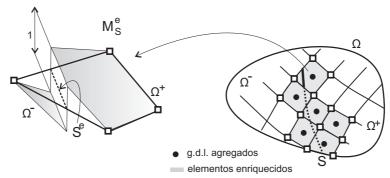


Figura 2: Elementos finitos con incorporación de grados de libertad internos mejorados (E-FEM).

3.1.2. Modelo constitutivo del acero

Para simular las barras de acero se eligió un modelo elástico lineal (isótropo). En este caso particular del análisis de la sección transversal es adecuado por que sólo se quiere modelar la expansión que sufre la barra de acero debido a la corrosión.

Se supone que la expansión de la barra de acero es radialmente uniforme (en el plano de la sección transversal). A esta se la simuló como si fuera una deformación volumétrica isótropa inicial en el material acero (es decir no se producen deformaciones de corte y las deformaciones longitudinales son iguales).

Asumiendo que la sección transversal del elemento está en el plano x-y (ver Figura 1), el tensor de deformaciones totales se puede expresar (usando notación de Voigt) de la siguiente forma:

$$\mathbf{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \\ \varepsilon_{zz} \end{bmatrix} = \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \\ 0 \end{bmatrix} = \mathbf{\varepsilon}_{e} + \mathbf{\varepsilon}_{0} = \frac{1}{E} \begin{bmatrix} \sigma_{xx} - v \sigma_{yy} - v \sigma_{zz} \\ \sigma_{yy} - v \sigma_{zz} - v \sigma_{xx} \\ 2(1+v)\sigma_{xy} \\ \sigma_{zz} - v \sigma_{xx} - v \sigma_{yy} \end{bmatrix} + \begin{bmatrix} D \\ D \\ 0 \\ 0 \end{bmatrix}$$

$$(1)$$

La componente ε_{zz} es nula debido a la hipótesis de deformación plana utilizado en esta parte (las componentes de corte en z no se indican porque son nulas tanto las componentes de deformación como las de tensión). El símbolo ε_e es el tensor de deformaciones elásticas y ε_o es el tensor de deformaciones iniciales aplicado, siendo sus componentes no nulas igual a D .

Debido a que en dirección z la expansión y su efecto son supuestamente mínimos por la poca superficie expuesta en ese sentido, la componente en z de la expansión se adopta como nula. Resultando en definitiva la deformación específica volumétrica aplicada, igual a:

$$\varepsilon_{v} = \sum_{i=1}^{3} \varepsilon_{ii} = 2 D$$
 (2)

Las tensiones se obtienen de la clásica expresión de elasticidad (\mathbf{C}_{e} es el tensor de elasticidad):

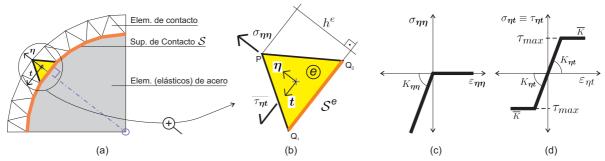
$$\boldsymbol{\sigma} = \mathbf{C}_{e} \; \boldsymbol{\varepsilon}_{e} = \mathbf{C}_{e} \left(\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{0} \right) \tag{3}$$

El dato experimental que se conoce, referido al nivel corrosión de la barra, es el valor X, y en función del mismo se puede expresar el aumento del volumen de la barra. Este aumento a su vez, bajo las hipótesis planteadas y para una barra circular, se puede determinar en función de ΔR (ver Figura 1(a)). Esta función y la Ec. (2) permiten estimar la componente D necesaria a aplicar para obtener $\Delta R(X)$:

$$D = \frac{R_f(X)^2 - R_i^2}{R_i^2} = \frac{\Delta R(X) + 1/2\Delta R(X)^2 / R_i}{R_i}$$
 (4)

Una interpretación de su significado se puede obtener despreciando el segundo término del numerador por ser pequeño, donde se ve que $D \equiv \Delta R/R_i$.

La dilatación total se aplica incrementalmente en el cálculo numérico, es decir si n_t es el número de pasos de tiempo establecidos para el análisis, se aplica en cada paso de tiempo una expansión de $\Delta \mathbf{\varepsilon}_0 = \mathrm{D}/n_t [1100]^T$.


3.1.3. Modelo de interfase entre el acero y el hormigón

Los mecanismos que ocurren en la interfase sugieren que hay un límite de la tensión de corte de adherencia entre el acero y el hormigón, que depende de varios factores (diámetro, textura de la barra, confinamiento, nivel de corrosión, etc.).

Para simular la adherencia entre la barra de acero y el hormigón se coloca al rededor de la primera un material de contacto (Ver Figura 1(b), Figura 3(a) y (b)). En este material se usa un modelo donde en la dirección de del versor \mathbf{t} (tangente a la superficie de contacto) y para la componente tangencial $\tau_{\eta t}$ se adopta un modelo clásico elástico-plástico unidimensional (ver Ref. 13), en función de la deformación de corte $\varepsilon_{\eta t}$ (Ver Figura 3(d)). En la dirección del versor $\mathbf{\eta}$ (ortogonal a la superficie de contacto) y para la tensión normal $\sigma_{\eta\eta}$ se adopta en comprensión un modelo elástico en función sólo de la deformación $\varepsilon_{\eta\eta}$ (Ver Figura 3(c)). Cuando esta deformación es de tracción, se establece que el material no transmite ninguna componente de tensión (esto se controla con la Ψ de la Ec. (5)). Para más información ver la Ref. 12 . El tensor de tensiones se puede expresar como:

$$\boldsymbol{\sigma} = \Psi \left[\overbrace{\boldsymbol{\sigma}_{\eta\eta} \left(\boldsymbol{\varepsilon}_{\eta\eta} \right) \left(\boldsymbol{\eta} \otimes \boldsymbol{\eta} \right) + \boldsymbol{\tau}_{\eta t} \left(\boldsymbol{\varepsilon}_{\eta t} \right) \left[\left(\boldsymbol{\eta} \otimes \boldsymbol{t} \right) + \left(\boldsymbol{t} \otimes \boldsymbol{\eta} \right) \right]}^{\text{elastico lineal}} \right]$$
 (5)

La dirección η se necesita especificar explícitamente para cada elemento de contacto (la dirección t queda definida al ser perpendicular a ella). En este caso se adopta la dirección formada por el centro de la barra y la del centro de gravedad del elemento.

Figura 3: Elementos Finitos en la interfase: (a) Esquema representativo. (b) Elemento típico de contacto. (c) Ley constitutiva para las tensiones normales $\sigma_{\eta\eta}$. (d) Ley constitutiva para las tensiones de corte $\tau_{\eta t}$.

3.2. Análisis mesoscópico a nivel del elemento estructural

Para la determinación del comportamiento mecánico, la forma de fisuración y el valor de la carga última del elemento estructural deteriorado por efecto de la corrosión, se utiliza un modelo mesoscópico donde se modela en forma separada el hormigón, las barras de acero y el material de contacto (interfase hormigón-acero). Un esquema se observa en la Figura 4. Se utiliza para su resolución la hipótesis de tensión plana.

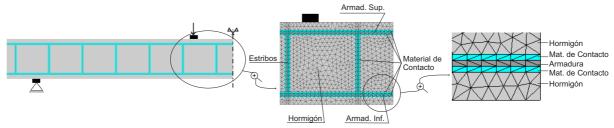
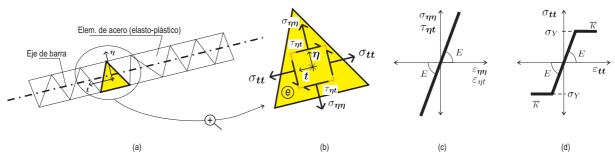


Figura 4: Elemento estructural. Modelo 2D con hipótesis de estado plano de tensiones.

En el hormigón y en el material de contacto se utiliza el mismo modelo que se utilizó para el análisis a nivel de la sección transversal (Sección 3.1). Para considerar los efectos de la adherencia, se deben definir la direcciones η de los elementos de contacto, que en el caso de una viga, son verticales para las armaduras longitudinales y horizontales para los estribos.


En la Figura 4 se observa la disposición de los distintos materiales, principalmente la forma adoptada para el modelado de estribos y armadura longitudinal, y el material de contacto.

En el caso del acero se utilizó un modelo distinto que se describe en el punto siguiente.

3.2.1. Modelo constitutivo del acero

El criterio de falla (plastificación) en elementos bidimensionales normalmente depende de todos las componentes de tensión. Ahora para que en la modelación propuesta (Figura 4) el acero plastifique correctamente (y no lo haga debido a una tensión normal vertical mal distribuida) se eligió un modelo donde la fluencia se produce en una sola dirección (dirección de versor t) y depende únicamente de la deformación ese sentido.

Por ello se utiliza para la componente normal σ_t un clásico modelo elástoplástico unidimensional (ver Ref. ¹³), sólo en función de la deformación ε_t (Ver Figura 5). Para las otras componentes de tensiones se utiliza un modelo elástico (Ver Figura 5(c)), considerando que el coeficiente de Poisson es nulo (v = 0).

Figura 5: Elemento de armadura elasto-plástico. (a) Esquema representativo. (b) Elemento típico de acero. (c) Ley constitutiva para las tensiones $\sigma_{\eta\eta}$ y $\tau_{\eta t}$. (d) Ley constitutiva para la tensión σ_{tt} .

El tensor de tensiones se puede expresar de la siguiente forma:

$$\boldsymbol{\sigma} = \overbrace{\sigma_{\eta\eta} \left(\varepsilon_{\eta\eta} \right) \left(\boldsymbol{\eta} \otimes \boldsymbol{\eta} \right) + \tau_{\eta t} \left(\varepsilon_{\eta t} \right) \left[\left(\boldsymbol{\eta} \otimes \boldsymbol{t} \right) + \left(\boldsymbol{t} \otimes \boldsymbol{\eta} \right) \right] + \overbrace{\sigma_{t t} \left(\varepsilon_{t t} \right) \left(\boldsymbol{t} \otimes \boldsymbol{t} \right)}^{\text{elastico-plástico}}$$
(6)

En este caso también se debe especificar explícitamente la dirección η como se hace para el material de contacto.

Se disminuye el ancho del material acero dependiendo de la profundidad de ataque de corrosión en la barra, y así considerar la pérdida de material debido a la corrosión.

3.3. Estrategia de transferencia de daño

El acoplamiento entre los dos modelos descriptos anteriormente (Sección 3.1 y 3.2) se realiza trasladando el daño (variable de daño del modelo constitutivo de hormigón) producido en la sección transversal, debido a la expansión de la armadura por corrosión, como daño inicial en el hormigón del modelo del elemento estructural. En la Figura 6 se indica un esquema de este procedimiento.

Del análisis de la sección transversal, al simular la expansión de la armadura se obtiene el mapa del daño que sufre la misma, el cual se modifica analizando si se produce desprendimiento (se considera así la zona que no colabora más en la resistencia del elemento estructural). La zona que se adopta como desprendida se determina a partir de la deformada y del mismo mapa de daño (línea de elementos con daño igual a 1 que divide la sección), y a los elementos pertenecientes a esta zona se le asignan un daño unitario.

Luego, a la sección trasversal se la divide en capas horizontales donde se determina un promedio del daño (ponderado por el área) de los elementos en cada una de ellas. De esta forma se tiene una función del daño que depende de la coordenada y (vertical), permitiendo por interpolación lineal asignarle a los elementos finitos de la malla del elemento estructural un daño inicial antes de aplicarle la carga externa.

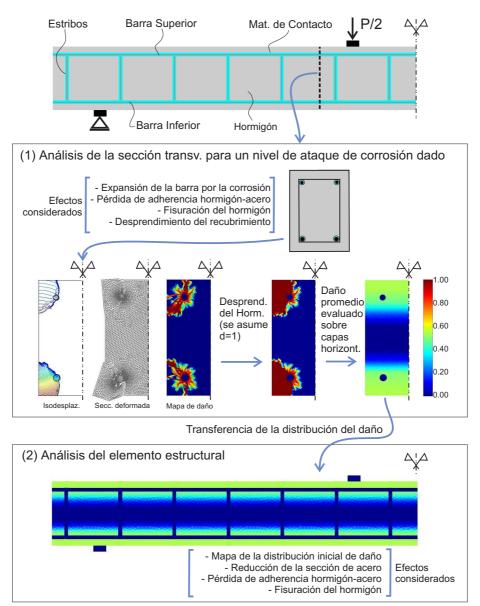
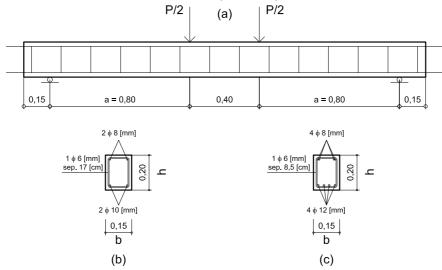


Figura 6: Estrategia de acoplamiento entre el análisis de la sección transversal y el elemento estructural


Esta transferencia del daño es consistente porque ambos análisis usan el mismo modelo continuo isotrópico de daño para simular el hormigón; es decir, la variable de daño es única y característica de la posición, y no de la dirección. Se considera que las tensiones remanentes de la expansión de la barra son despreciables y que por su dirección tienen poca influencia en el análisis del modelo estructural, por lo que no influye que no se transfiera el estado tensional entre ambos análisis.

Nótese que en la presente estrategia, y en contraste a otros modelos propuestos para elementos de hormigón armado con corrosión, no se hace ninguna suposición sobre la reducción en la sección de hormigón ni modificaciones empíricas de su comportamiento constitutivo para simular la degradación del hormigón debido a la corrosión de la barras de acero. Únicamente se considera el fenómeno a través de un mapeo consistente de la variable de daño entre dos análisis separados.

4. Resultados Numéricos

4.1. Ejemplo de verificación

Como verificación de la estrategia propuesta en este trabajo, se analizaron vigas de hormigón armado cuyos resultados experimentales se conocen. Estas se obtuvieron de Rodriguez *et al.* ^{1 y 2}, quienes ensayaron vigas con diferentes cantidades de armaduras y niveles de corrosión. Estas se clasificaron en dos grupos o tipos de vigas: Vigas 11 y Vigas 31. Las características geométricas generales de las mismas y las condiciones de borde y carga que se utilizaron en el ensayo se pueden ver el la Figura 7. La mayor diferencia entre estos dos tipos de viga es la disposición de la armadura y la cantidad de barras usadas (cuantía).

Figura 7: Vigas de hormigón armado. (a) Dimensiones y Condiciones de borde. (b) Detalle de la sección transversal de viga tipo 11 (cuantía de aprox. 5%). (c) Detalle de la sección transversal de viga tipo 31 (cuantía de aprox. 1,5%).

Los casos denominados 11-1 y 31-1 corresponden a vigas que no fueron afectadas por corrosión. Las características de estas y las restantes se encuentran en la Tabla 1 (extraídas de 4), donde se observa la profundidad del ataque de la corrosión X (Figura 1(a)) medido para cada de unas de las barras (longitudinales y estribos). También en esta tabla se presenta la tensión última a compresión del hormigón (σ_u), la tensión de fluencia del acero (σ_Y) y se establece una tensión de corte máxima (τ_{max}) para la adherencia en función del nivel de corrosión (con esta tensión se caracteriza la pérdida de adherencia entre la armadura y el hormigón).

Denom.	Dimens.	Barras de acero			Tensiones últimas			Ataque de corrosión X en armad.		
Viga	lxhxb	Sup.	Inf.	Estribos	Horm.	Acero	Adher.	Long. Inf.	Long. Sup.	Estribos
	[m]	Nº Ø[mm]	Nº Ø[mm]	Ø[mm] c/[cm]	σ _u [MPa]	σ _Y [MPa]	τ _{máx} [MPa]	[mm]	[mm]	[mm]
11-1	2x0,20x0,15	2Ø8	2Ø10	Ø6 c/17	50	575	6,86			
11-4					34		4,10	0,45	0,52	0,39
11-5					34		4,13	0,36	0,26	0,37
11-6					34		4,04	0,70	0,48	0,66
31-1	2x0,20x0,15	4Ø8	4Ø12	Ø6 c/8,5	49	575	7,82			
31-3					37		5,12	0,30	0,20	0,35
31-4					37		5,06	0,48	0,26	0,50

Tabla 1: Vigas tipos 11 y 31, obtenidas de 4 . Descripciones de los materiales de las vigas de hormigón 4 . Mediciones experimentales de los ataques de corrosión en las barras $^{1\,y\,2}$. Tensión de adherencia residual $\tau_{m\acute{a}x}^{\phantom{m\acute{a}x}}$.

La corrosión de las barras de los especímenes de las vigas de hormigón de Rodriguez *et al.* se obtuvo en forma acelerada usando un hormigón mezclado con cloruro de calcio (debido a esto es que las vigas con corrosión tienen una tensión última a comprensión menor que la que le corresponde a las vigas sin corrosión). Dado que la corrosión de la armadura fue generalizada, se pueden transferir en forma uniforme, a todo el largo de la viga, los datos de daño del análisis de la sección transversal.

También, como validación y comparación, se indicaron los resultados numéricos que obtuvieron Coronelli *et al.* ⁴, donde se utilizó otro modelo numérico (también bidimensional y mesoscópico.

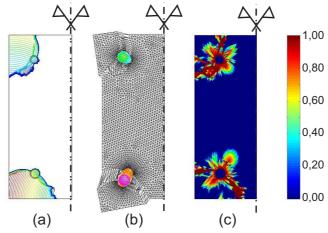
4.2. Caracterización del modelo numérico

Para caracterizar los materiales utilizados en los modelos se consideró lo siguiente:

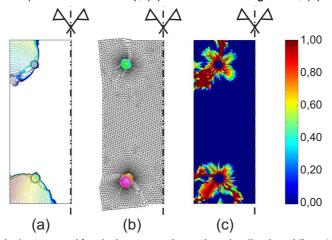
- La tensión última a comprensión σ_u se obtiene de la Tabla 1, mientras que la tensión última de tracción se adoptó igual a $\sigma_u^t = 0,10 \, \sigma_u$. Las otras propiedades para el concreto, como el módulo de Elasticidad, el coeficiente de Poisson, la energía de fractura y el módulo de ablandamiento se le asignaron valores estándares (y usados previamente por otros autores, ver por ejemplo ¹¹).
- La tensión de plastificación del modelo de adherencia (sección 3.1.3), $\tau_{m\acute{a}x}$, es la dada en Tabla 1 en función del deterioro X. En el caso de la sección transversal se considera que esta tensión de adherencia es la misma desde el comienzo de la expansión.
- En el caso del análisis de la sección transversal, la componente D se calculó con la Ec. (4), donde, siguiendo ⁴ y ¹⁴, se adoptó ΔR = X (es decir, la misma magnitud que se corroe, la barra se expande). Esto se puede adoptar debido a que se asume que todo el producto de la corrosión se acumula alrededor de la barra (por ej. no hay poros de hormigón a rellenar) y es incomprensible.
- En el caso de la barra de acero del análisis a nivel del elemento estructural se le asignó la tensión fluencia de Tabla 1 y se redujo su sección debido a la pérdida de material por la corrosión. Para esto se usó un radio neto de la barra de acero:

$$R_{neto} = R_i - X \tag{7}$$

Para el mallado por elementos finitos, se utilizó en todos los casos elementos triangulares, y además, en el hormigón, se introdujeron elementos enriquecidos con discontinuidades fuertes (Sección 3.1.1). Para optimizar el cálculo en ambos análisis se consideraron todas las simetrías posibles.


4.3. Resultados Numéricos

4.3.1. Análisis en la sección transversal del elemento estructural


En esta sección se indican los resultados obtenidos para cada unas de las vigas con corrosión de Tabla 1.

En las Figura 8, Figura 9 y Figura 10 se muestran los resultados en la etapa final (momento que se alcanzó $\Delta R = X$) de las vigas 11 con corrosión. Se observa

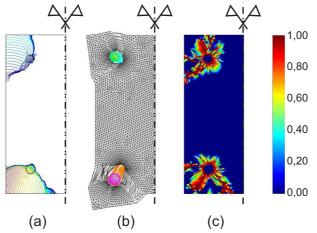

que el principal mecanismo de falla es una fisura inclinada que separa (desprende) el recubrimiento de la armadura en las esquinas de la sección transversal.

Figura 8: Análisis de la expansión de las armaduras longitudinales. Viga 11-4: (a) Líneas de isodesplazamiento (forma de la fisura), (b) Deformada exagerada, (c) Mapa de daño.

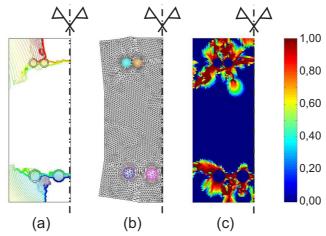


Figura 9: Análisis de la expansión de las armaduras longitudinales. Viga 11-5: (a) Líneas de isodesplazamiento (forma de la fisura), (b) Deformada exagerada, (c) Mapa de daño.

Figura 10: Análisis de la expansión de las armaduras longitudinales. Viga 11-6: (a) Líneas de isodesplazamiento (forma de la fisura), (b) Deformada exagerada, (c) Mapa de daño.

En la misma etapa ($\Delta R = X$) se muestra en las Figura 11 y Figura 12 los resultados obtenidos para las vigas 31 con corrosión. En este caso el mecanismo local de falla consiste en la delaminación del recubrimiento en las barras adyacentes internas y de fisura inclinada para las externas.

Figura 11: Análisis de la expansión de las armaduras longitudinales. Viga 31-3: (a) Líneas de isodesplazamiento (forma de la fisura), (b) Deformada exagerada, (c) Mapa de daño.

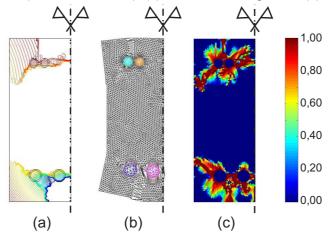
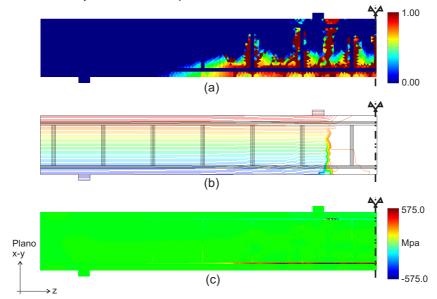


Figura 12: Análisis de la expansión de las armaduras longitudinales. Viga 31-4: (a) Líneas de isodesplazamiento (forma de la fisura), (b) Deformada exagerada, (c) Mapa de daño.

En general, desde un punto de visto cualitativo, se observa que el modelo numérico de deformación plana propuesto capturó mecanismos de fallas físicamente admisibles. Se cree que la incorporación de los elementos finitos de interfase (material de contacto) fue una razón importante para la determinación adecuada de la distribución de fisuras.

También se puede mencionar que las formas de fracturas coinciden con las predicciones obtenidas de ⁶:


Si
$$S > 6$$
 $D \Rightarrow$ prevalece la fisura inclinada
Si $L > (S - D)/2 \Rightarrow$ prevalece la delaminación (8)

Donde S es la separación horizontal de las barras, L la profundidad del recubrimiento y D el diámetro de la barra.

4.3.2. Análisis del elemento estructural y determinación de carga última

El principal resultado del análisis anterior (Sección 4.3.1) es la determinación de la distribución del daño en la sección transversal. Esta información es procesada siguiendo el procedimiento indicado en la Sección 3.3, permitiendo imponer a la viga un mapa de deterioro inicial (daño) antes de aplicarle la carga externa.

En las Figura 13 y Figura 14 se indican los resultados obtenidos para dos vigas tipo 11, una sin corrosión (Viga 11-1) y otra con corrosión (viga 11-4). En las Figura 15 y Figura 16, se muestran los mismos resultados para dos vigas tipo 31 (con y sin corrosión respectivamente).

Figura 13: Resultados cualitativos del modelo mesoscópico del elemento estructural. Viga 11-1 (sin corrosión): (a) Mapa del daño, (b) Isolíneas del desplazamiento en dirección z, (c) Mapa de la tensión normal σ₂₇.

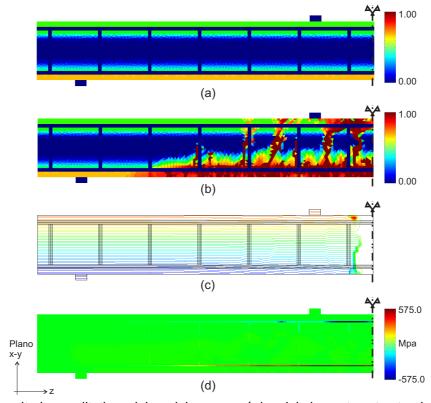
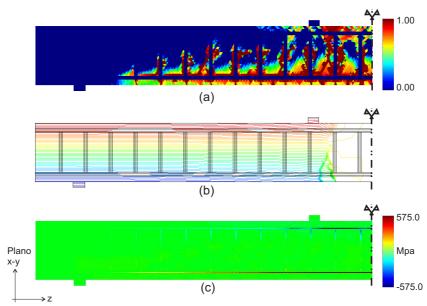



Figura 14: Resultados cualitativos del modelo mesoscópico del elemento estructural. Viga 11-4: (a) Condición inicial de daño (b) Mapa final del daño, (b) Isolíneas del desplazamiento en dirección z, (c) Mapa de la tensión normal σ_{zz}.

Figura 15: Resultados cualitativos del modelo mesoscópico del elemento estructural. Viga 31-1 (sin corrosión): (a) Mapa del daño, (b) Isolíneas del desplazamiento en dirección z, (c) Mapa de la tensión normal σ_{zz} .

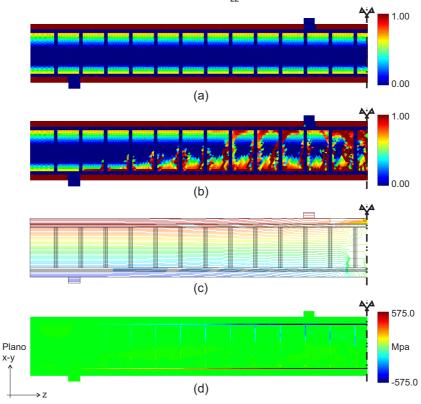


Figura 16: Resultados cualitativos del modelo mesoscópico del elemento estructural. Viga 31-3: (a) Condición inicial de daño (b) Mapa final del daño, (b) Isolíneas del desplazamiento en dirección z, (c) Mapa de la tensión normal σ_{zz}.

En todos los casos estudiados se identificó como mecanismo macroscópico ultimo de falla, que determina la carga límite, una fisura vertical que se encuentra cercana al centro de la viga. La fractura observada corresponde a un modo I, que es típica para vigas normalmente armadas sometidas a flexión.

Desde la Figura 17 a la Figura 23 se muestra, para todas las vigas tipo 11 y 31, la evolución de la carga vertical total P (Figura 7) versus el desplazamiento del

punto medio de la viga. En estas figuras se observa buena coincidencia de los resultados de este análisis con los resultados experimentales (Rodriguez et al. ¹) y los resultados numéricos de Coronelli et al. ⁴. En términos generales, se observa que se capturó el típico comportamiento de las vigas de hormigón armado: una rigidez inicial correspondiente a un material no dañado (sin presencia de fisuras); una rigidez intermedia caracterizada por la propagación de macro fracturas por tracción; y por último, una recta horizontal que define el mecanismo de falla límite, ya sea por haberse alcanzado la resistencia última del hormigón a comprensión o por la fluencia de acero (o por ambos a la vez).

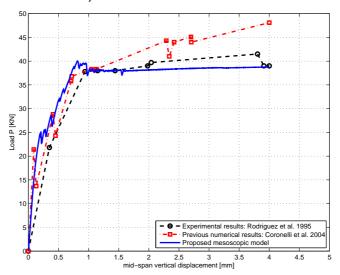


Figura 17: Respuesta estructural, gráfica desplazamiento-carga. Viga 11-1

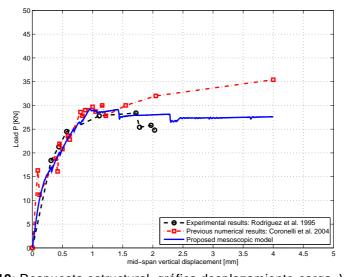


Figura 18: Respuesta estructural, gráfica desplazamiento-carga. Viga 11-4

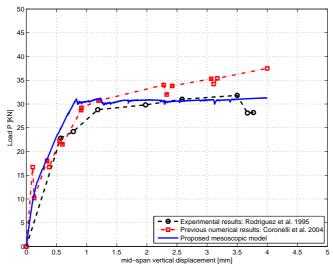


Figura 19: Respuesta estructural, gráfica desplazamiento-carga. Viga 11-5

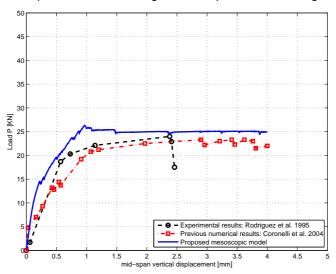


Figura 20: Respuesta estructural, gráfica desplazamiento-carga. Viga 11-6

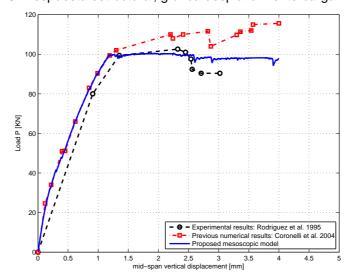


Figura 21: Respuesta estructural, gráfica desplazamiento-carga. Viga 31-1

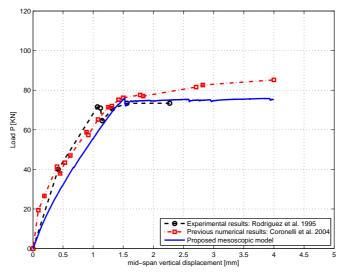


Figura 22: Respuesta estructural, gráfica desplazamiento-carga. Viga 31-3

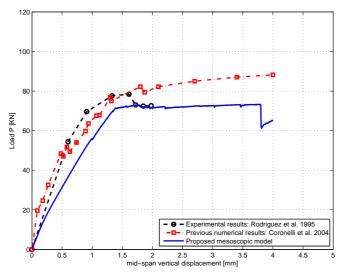


Figura 23: Respuesta estructural, gráfica desplazamiento-carga. Viga 31-4

5. Conclusiones

En trabajo se presentó modelo numérico para resolver problemas de vigas de hormigón armado sometidas a fenómenos de corrosión. Como nueva contribución, se desarrollaron dos modelos mesoscópicos (a nivel de la sección transversal y a nivel del elemento estructural) y se propuso una estrategia de acoplamiento entre ambos modelos.

Con la metodología propuesta pueden ser simulados los mecanismos más importantes de corrosión, como por ej.: la expansión de barras de acero, el daño y la fisuración en el hormigón, la degradación de las tensiones de adherencia (esto se consigue al incorporarse elementos de contacto que mejoran la simulación de los efectos sobre la interfase hormigón-acero).

El modelo ofrece información en todas las etapas del proceso de degradación, por lo que, además de poder utilizarse para determinar la carga última, también sirve como una herramienta para analizar los posibles mecanismos que pueden afectar la serviciabilidad de la estructura sometida a un hipotético nivel de corrosión.

De las soluciones numéricas realizadas surgen algunas conclusiones adicionales:

- El modelo de la sección transversal capturó en forma adecuada la distribución de fisuras, obteniendo los modos de fisuración (inclinada o delaminación) según la separación entre las barras. El modelo propuesto se puede aplicar a secciones más complicadas para obtener una idea cualitativa de los mecanismos de deterioro inducidos por la expansión de la armadura.
- A nivel estructural se capturaron patrones admisibles de deterioro, se observó el típico de modo I de fractura, y se evaluó en forma aceptable la sensibilidad de la carga límite a los niveles de corrosión.

6. Referencias

- **1.** J. Rodriguez, L. Ortega, and J. Casal. Load carrying capacity of concrete structures with corroded reinforcement. *In M. Forde, editor, 4th Int. Conf. on Structure Faults and Repair*, pages 189–199, Edinburgh, U.K., 1995. Engineering Tech. Press.
- **2.** J. Rodriguez, L. Ortega, J. Casal, and M.D. Diez. Assessing structural conditions of concrete structures with corroded reinforcement. In R.K. Dhir Dundee, Scotland and N.A. Henderson, editors, *Proc. Int. Conf. on Concrete in the Service of Mankind*, pages 141–150, London, 1996. E&FN Spon.
- **3.** J. Rodriguez, L. Ortega, and A. Garcia. Corrosion of reinforcing bars and service life of r/c structures: Corrosion and bond deterioration. In *Proc. Int. Conf. on concrete across Borders*, volume 2, Odense, Denmark, 1994.
- **4.** D. Coronelli and P. Gambarova. Structural assessment of corroded reinforced concrete beams: modeling guidelines. *J. Struct. Eng. ASCE*, 130(8):1214–1224, 2004.
- **5.** Durabilidad del Hormigón Estructural. *Asociación Argentina de Tecnología del Hormigón*, 2001.
- **6.** R. Capozucca. Damage to reinforced concrete due to reinforcement corrosion. *Construction and Building Materials*, 9(5):295–303, 1995.
- **7.** J. Oliver and A.E. Huespe. Theoretical and computational issues in modelling material failure in strong discontinuity scenarios. *Comp. Meth. App. Mech. Engrg.*, 193:2987–3014, 2004.
- **8.** J. Oliver and A. E. Huespe. Continuum approach to material failure in strong discontinuity settings. *Comp. Meth. Appl. Mech. in Engrg.*, 193:3195–3220, 2004.
- **9.** J. Oliver, M. Cervera, S. Oller, and J. Lubliner. Isotropic damage models and smeared crack analysis of concrete. In *N.B. et al. editor*, *SCI-C Computer Aided Analysis and design of concrete Structures*, pages 945–957, Swansea, 1990. Pineridge Press.
- **10.** J. Oliver. On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations. Int. J. Solids Struct., 37:7207–7229, 2000.
- **11.** J. Oliver, A.E. Huespe, and P.J. Sánchez. A comparative study on finite elements for capturing strong discontinuities: e-fem vs x-fem. *Comput. Methods Appl. Mech. Engrg.*, 195(37-40):4732–4752, 2006.
- **12.** J. Oliver, A. E. Huespe, and J. Cante. An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems. *Comp. Meth. Appl. Mech. in Engrg.*, In press, Corrected proof. Available on line 8 December, 2007.
 - 13. J. Simo and T. Hughes. Computational inelasticity. Springer-Verlag. 1998.
- **14.** F.J. Molina, C. Alonso, and C. Andrade. Cover cracking as a function of rebar corrosion. ii: Numerical model. *Mater . Struct.*, 26:532–548, 1993.
- **15.** Zienkiewicz, O.C. and Taylor, R.L.. The Finite Element Method. *Butterworth-Heinemann*, Oxford, UK, 2000.