LA IMPORTANCIA DE LA OPTIMIZACIÓN DEL DISEÑO EN LA CAPACIDAD DE RESISTENCIA FINAL DE UNA ESTRUCTURA DE MADERA

Julio César Pacini Ingeniero Civil (UBA) Buenos Aires, Argentina APA

El Ing. Pacini, se ha desempeñado 8 años en Eurobra S.A., como proyectista senior, jefe de producción y director de obra. Como profesional independiente ha proyectado y construido numerosas obras en madera. Ha tomado y dado cursos de especialización. Ha sido asesor para múltiples empresas, conferencista, asesor del CIRSOC, redactor del capítulo de maderas del nuevo CE de Bs As y colaborador en el desarrollo de la norma IRAM 9670. Docente de la FIUBA por más de 20 años, actualmente profesor en la cátedra de Estructuras de Madera.

RESUMEN

Los reglamentos posibilitan que los elementos diseñados y calculados por profesionales de acuerdo a la normativa vigente; o respecto de elementos cuyas medidas, materiales y métodos constructivos vienen prefijados por el propio reglamento garanticen una resistencia mínima del elemento aislado.

Nada nos dicen acerca de cómo varía dicha resistencia cuando el elemento se encuentra formando parte de una estructura y vinculado a otros elementos estructurales y como varia optimizando su emplazamiento. No nos dicen nada tampoco, sobre la reserva de resistencia con que una estructura cuenta para enfrentar circunstancias excepcionales.

El presente trabajo analiza para el caso de arriostramientos horizontales de viviendas en una planta a cuanto asciende dicha reserva de resistencia para diversas configuraciones estudiadas manteniendo constante la geometría y cantidad de los elementos individuales.

Los casos estudiados incluyen variaciones en la vinculación de los elementos resistentes entre si y con el resto de la estructura, variaciones en la ubicación de los mismos en planta y variaciones en el armado del revestimiento estructural de los propios elementos resistentes.

ABSTRACT

Regulations allow that engineered elements designed and calculated by professionals in accordance to current standards or elements whose measurements, materials and building methods are specified by those very standards warranty a minimum resistance for that element considered in isolation.

Nothing is said about how those elements' resistance changed globally while being part of a building and connected to other structural members or how these global resistance changes when the location of the members is optimized. Again nothing is said about the resistance reserves of a given structure under exceptional loading.

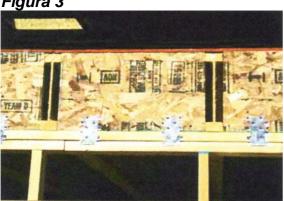
The present work studies the case of horizontal bracing for single story housing buildings. Defines the amount of extra resistance for varying configurations and layouts keeping constant the individual shear walls characteristics and quantity for each case study.

The cases studies include varying the connection between bracing elements and between them and the rest of the structure, layout variations and different ways of configuring the sheathing of the shear walls.

Durante años se han hecho investigaciones tendientes a estudiar los efectos de la acción sísmica o de viento en construcciones con entramados estructurales de madera. La gran mayoría de estos ensayos se han llevado a cabo en tabiques individuales en configuración planar (bidimensional). Muy pocos ensayos se han hecho en estructuras tridimensionales a tamaño completo. Debido a ello se sabe muy poco acerca de las transferencias de carga entre las varias paredes de corte que integran una planta y entre estas y los diafragmas superior e inferior (piso y techo), así como de la interacción entre los diversos elementos estructurales. La siguiente serie de ensayos trata de comenzar a esclarecer algunos de estos interrogantes. En la primera fase la estructura de ensayo mide aproximadamente 8.00 m x 11.50 m, las paredes son de 2.40 m de alto con un entramado con parantes de 2" x 4" separados 60cm entre ejes. Las paredes se construyeron sobre un separador de 2" x 6" de manera que el revestimiento estructural de la pared no descarque sobre la platea de fundación de hormigón (fig. 1). Los bulones de anclaje se encuentran separados 1.20 m entre ejes y a no más de 30cm del extremo de la solera de piso. Las tuercas se ajustan a mano + 1/4 de vuelta.

Figura 1

Figura 2



Detalle de anclaje. Nótese el espaciador de 2 x 6 para minimizar la influencia de la losa de apoyo y los bulones separados 1.20m.

Abertura de aproximadamente 1m x 1m en el diafragma de techo.

Se deja una abertura de aproximadamente 1.20m x 1.20m cercana a la mitad del diafragma de techo para la futura colocación de aparatos de carga que permitan ensayos con fuerzas a 45º (fig. 2). La solera superior es discontinua de modo de minimizar su contribución a la rigidez de las paredes de corte (fig. 3). Se usan placas metálicas de unión para mejorar la transmisión de esfuerzos entre la parte superior de las paredes y el diafragma de techo (fig. 4).

Figura 3

Detalles de Solera. Notar la solera de borde discontínua y las placas metálicas para reforzar la unión.

Refuerzos de la correa de arranca con placas metálicas.

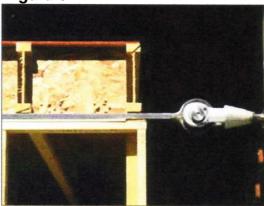
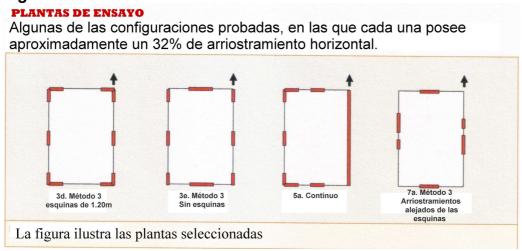

La carga se aplica tirando de la doble solera superior mediante una barra de acero como muestran las figuras 5 y 6. Con la barra de acero se alinea una clavija de anclaje calibrada que mide directamente la carga aplicada al tope de la pared (figura 6). La carga se transmite mediante un elemento de toma mostrado en la figura 6. Otros métodos de carga alternativos pueden aplicarse también.

Figura 5

Conexión de carga de la solera superior. Las diagonales de arriostramiento son temporales durante el período constructivo.


Figura 6

Clavija calibrada y pieza de anclaje de cargas.

El ensayo está diseñado para recolectar datos sobre la respuesta de paredes y el conjunto de la edificación utilizando diferentes métodos y configuraciones de arriostramientos. Se diseñan las paredes para que sean el mecanismo de falla de la estructura para limitar los daños a la misma y maximizar las posibilidades de reparar y ensayar otras configuraciones. El máximo desplazamiento permitido es de 40mm para minimizar los daños y garantizar el máximo número de repeticiones posibles con el mismo entramado. La figura 7 muestra configuraciones adoptadas.

Figura 7

EFECTO DE ESQUINEROS Y ANCLAJES

El objeto de este estudio preliminar consiste en determinar la resistencia de la edificación cuando solo hay una línea de paredes arriostradas y el efecto en la misma del uso de anclajes y paneles de retorno de esquina. Los resultados de este estudio se aplican a las otras configuraciones 3d.

METODOS DE ENSAYO

La figura 8 muestra las diferentes plantas ensayadas en la serie, planta en fig.9. La longitud de la pared es de 11.00 m. Se utilizan como arriostramiento el método 3 del IRC 2006 con paredes segmentadas que para la longitud dada requiere un segmento en cada extremo y uno intermedio lo cual implica un de 32% de la longitud total arriostrada las placas de revestimiento se fijaron con clavos 8d (.113" x 23 / 3" / 3mm x 60 mm) clavados a 15cm entre centros en el perímetro y a 30 cm en el interior. Para esta serie se ha estudiado el efecto de paneles de retorno de esquina y anclajes en los extremos de la línea. El escenario 3a presenta esquineros y el 3a-hd agrega anclajes con una capacidad de carga de 360 kg (fig.10). Los escenarios 3b y 3b-hd son similares pero sin la presencia de paneles de esquina. Todos los bulones de fijación, de anclaje y tirafondos se ajustaron con la mano más ¼ de vuelta.

Figura 8

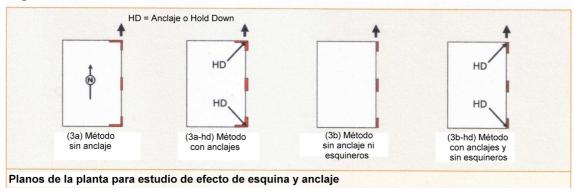
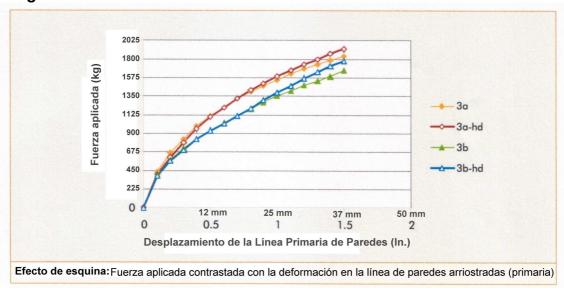
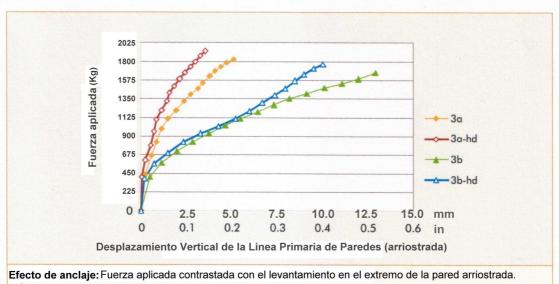


Figura 9

Configuración de casa tipo 3a: Se pueden observar detrás de la columna de soporte del techo del área labortorio los arriostramientos de esquina de 1.20 m.

Figura 10



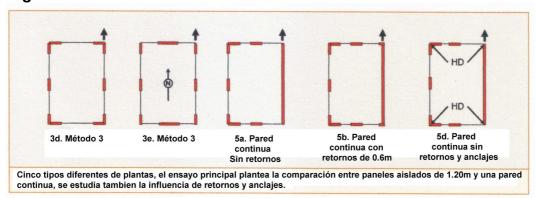

Detalle de la configuración 3a-hd. Nótese que la tuerca inferior se aflojó para que no trabaje de modo que la totalidad de la resistencia al levantamiento provenga del anclaje y no del bulón de fijación.

La figura 11 superior muestra el gráfico carga-desplazamiento horizontal en la línea de paredes. Basados en estos resultados se comprueba una mejora del 4% y del 7% entre las configuraciones a y b cuando se usan anclajes y del 8% al 20% cuando se usan retornos de 1.²⁰m en las esquinas.

La figura 11 inferior muestra la relación carga desplazamiento vertical en el extremo alejado del punto de rotación. Los esquemas sin retornos de esquina producen un desplazamiento vertical de 2.5 (vs. 3a) a 3 (vs. 3a-hd) veces el correspondiente a los desplazamientos con retorno. La presencia de anclajes reduce el desplazamiento vertical en un 45% cuando hay retornos y en un 25% cuando no los hay.

Figura 11

Los anclajes fueron efectivos para reducir el desplazamiento vertical pero solo una mejora marginal en la capacidad de carga.


Los retornos de esquina produjeron una mejora del 20% en la capacidad de deformación.

Los anclajes produjeron una mejora de solo el 7% en la capacidad de deformación. Los retornos de esquina presentan una mejora manifiestamente superior a los anclajes de 360Kg.

Considerando que tanto los anclajes como los retornos actúan solo sobre los segmentos extremos es de esperarse una mejora marginal en la capacidad total de carga.

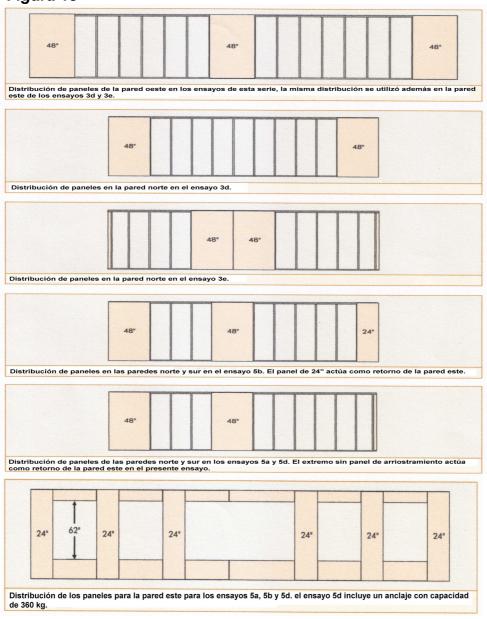

Este ensayo compara una línea de pared arriostrada con paneles aislados de 1.20m contra una pared estructural continua arriostrada con segmentos de 60cm y relación 4:1. La figura 12 muestra las cinco plantas de ensayo, cada una cuenta con un 32% de la longitud arriostrada. Nótese que los retornos en el ensayo 5b no se consideran arriostramiento ya que se encuentran al lado de una abertura de altura total y por lo tanto no califica como arriostramiento según el IBC 2006.

Figura 12

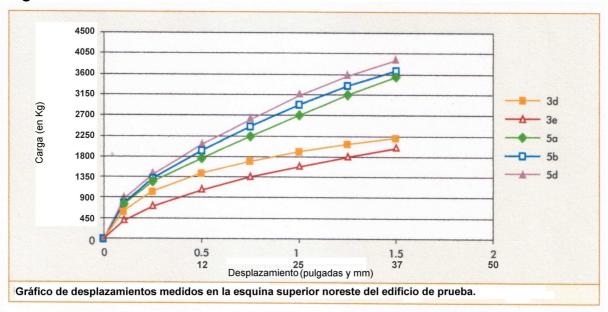

La figura 13 muestra la distribución de paneles de arriostramiento para cada pared. Adicionalmente el ensayo 5d incluye un anclaje con capacidad de 360kg en cada esquina.

Figura 13

La figura 14 muestra la relación carga aplicada-desplazamiento en la esquina noreste de la estructura como se muestra en la figura 12.

Figura 14

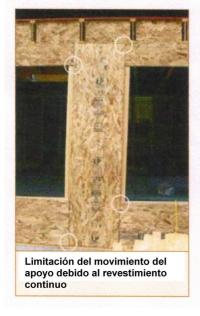
La tabla 1 muestra los resultados del ensayo graficados en la figura anterior.

Tabla 1

DE LA EDIFIC		YO; CARGAS I	REGISTRADA	S EN LA PART	IE SUPERIOR	DE LA ESQUIN	IA NORES I
DE LA EDII IO	ACION.						
Ensayo tipo		Carga (en Kgr	n) para cada d	desplazamiento	(en milímetros)		
	2.5	6.25	12.5	18.75	25	31.25	37.5
3d	572	1027	1423	1678	1895	2068	2195
3e	410	725	1081	1368	1596	1814	2014
5a	766	1248	1759	2249	2703	3143	3537
5b	782	1320	1932	2458	2929	3351	3684
5d	875	1408	2052	2606	3129	3558	3910

La tabla 2 muestra la relación entre los ensayos de estructuras arriostradas con paneles aislados de 1.20m de ancho (ensayos 3d y 3e) y aquellas con paredes continuas y arriostradas con segmentos en forma de paneles de 60cm (relación 4:1) (ensayos 5a, 5b y 5d). Se compara la performance tabulada en la tabla anterior. Por ejemplo para un desplazamiento de 6.25mm la relación entre la carga del ensayo 5a dividida por la del ensayo 3d resulta 1.21, es decir que el esquema estructural del ensayo 5a resiste una carga 21% superior que la del ensayo 3d para ese desplazamiento.

CONCLUSIONES

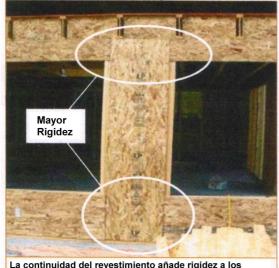

■ Los ensayos con arriostramiento 4:1 continuo y retornos de 60cm (5b) resultaron 28 a 68% mejores que aquellos con arriostramiento aislado de

- 1.20m con los mismos retornos (3d) y 79 a 90% superiores que los de arriostramiento aislado sin retorno (3c).
- Los ensayos con segmentos de arriostramiento de relación 4:1 y retornos de 60cm (5b) se comportaron 2 a 10% mejor que los que carecían de estos (5a). La contribución de los retornos en la pared continua resultó despreciable ya que las diferencias observadas se encuentran dentro del rango de magnitud de diferencias entre ensayos similares.
- La presencia de anclajes de 360kg (5d) produjo una mejora de 11 a 17% respecto a la misma situación sin ellos (5a).
- Para la misma cantidad de arriostramiento el esquema 4:1 continuo se comportó significativamente mejor que el de paneles aislados de 1.20 m. La idea de que el arriostramiento angosto en pared continua genera debilidad no es confirmada por el presente ensayo.

Tabla 2

Relación entre —		Relac	ión resultante	para cada desp	lazamiento		
Relacion entre —	2.5	6.25	12.5	18.75	25	31.25	37.5
5a/3d	1.34	1.21	1.24	1.34	1.43	1.52	1.61
5b/3d	1.37	1.28	1.36	1.46	1.55	1.62	1.68
5d/3d	1.53	1.37	1.44	1.55	1.65	1.72	1.78
5a/3e	1.87	1.72	1.63	1.64	1.69	1.73	1.76
5b/3e	1.90	1.82	1.79	1.80	1.84	1.85	1.83
5d/3e	2.13	1.94	1.90	1.90	1.96	1.96	1.94
5b/5a	1.02	1.06	1.10	1.09	1.08	1.07	1.04
5d/5a	1.14	1.13	1.17	1.16	1.16	1.13	1.11

Figura 15



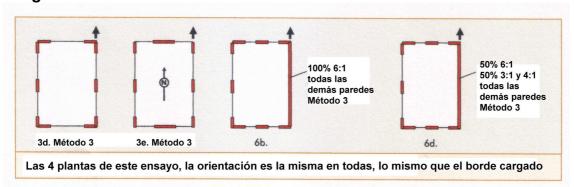
rigidez a la doble solera y al segmento de ralación 4:1

Figura 16

La continuidad del revestimiento añade rigidez a los segmentos de arriostramiento de la pared al añadir superficie de apoyo, resistencia al levantamiento, rigidización de las soleras y unión continua entre solera y parante.

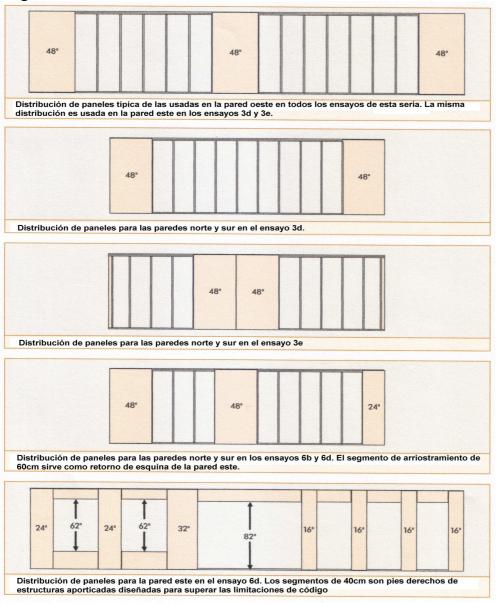
El arriostramiento con paneles aislados provee menor rigidez debido a la falta de apoyo, menor resistencia al levantamiento y rigidización de las soleras, y menor área de unión entre soleras y parantes.

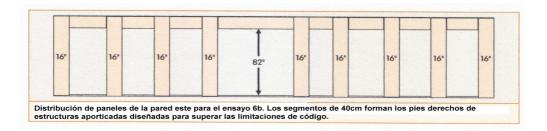
ANALISIS DE LOS ENSAYOS:


Los resultados del ensayo anterior contradicen la percepción según la cual los segmentos de arriostrar angostos no pueden ser tan rígidos como los más anchos, por lo que se necesita ahondar en el análisis. Mientras el ancho de los segmentos de pared de arriostrar es un factor importante en la determinación de la rigidez del conjunto, existen otros factores que deben tenerse en cuenta como las uniones con la parte superior e inferior de la pared y la cantidad de revestimiento estructural en la misma.

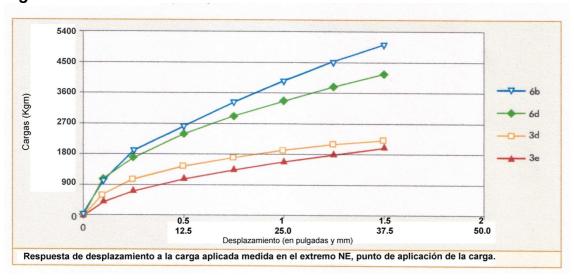
La pared continua arriostrada utiliza una mucho mayor cantidad de placa estructural, en el caso del ensayo en bajo análisis esta resulta en una superficie de 15.50m2, con respecto a la distribución en el método de panel aislado que es de 8.90m2. Esta relación resulta en aproximadamente un 75% más de revestimiento estructural cuando se construye de acuerdo a los requerimientos mínimos de código para una cantidad de arriostramiento equivalente en ambos casos.

El revestimiento estructural y los medios de unión (clavos) adicionales usados en la pared continua otorgan mayor rigidez y apoyo a los segmentos de arriostrar como se muestra en las figuras 15 y 16, la fig. 16 ilustra diferencia entre continua y aislado. La combinación de restricción de movimientos con mayor cantidad de revestimiento estructural y clavos explican porque los segmentos angostos presentaron un comportamiento superior al de los segmentos aislados mas anchos.


Este ensayo compara una línea de pared arriostrada con paneles aislados de 1.20m contra una pared estructural continua arriostrada con pórticos con pies derechos de 40cm de ancho (relación 6:1), solos o en combinación con segmentos de 60cm y 80cm. La figura 15 muestra las cuatro plantas de ensayo, cada una cuenta con un 32% de la longitud arriostrada. Nótese que los retornos en los extremos norte y sur en los ensayos 6b y 6d no se consideran arriostramiento ya que se encuentran al lado de una abertura de altura total y por lo tanto no califica como arriostramiento según el IBC 2006.


Figura 17

La figura 17 muestra las plantas de ensayo y la figura 18 la distribución de paneles de arriostramiento para cada pared. Adicionalmente el ensayo 5d incluye un anclaje con capacidad de 360kg en cada esquina.


Figura 18

La siguiente Figura 19 muestra la relación carga aplicada-desplazamiento en la esquina noreste de la estructura como se muestra en la figura 17.

Figura 19

La *tabla 3* muestra los resultados del ensayo graficados en la figura anterior. *Tabla 3*

RESULTADO	DS DE LOS EN	SAYOS CON LA	S CARGAS Y D	ESPLAZAMIEN	IOS MEDIDOS	EN LA ESQUIN	IA NORES I
Carga (m	nedida en Kgn	ı) soportada po	r cada configu	ración para el de	esplazamiento	indicado en la	fila superio
Ensayo	2.5	6.25	12.5	18.75	25.0	31.25	37.5
3d	572	1027	1423	1678	1894	2068	2196
3e	411	725	1081	1368	1596	1814	2013
6b	986	1698	2547	3275	3910	4474	4978
6d	1025	1710	2402	2903	3371	3773	4152

La *tabla 4* muestra la relación entre los ensayos de estructuras arriostradas con paneles aislados de 1.20m de ancho (ensayos 3d y 3e) y aquellas con paredes continuas y arriostradas solo con pórticos con pies derechos en forma de paneles de 40cm (relación 6:1) (ensayo 6b); y en combinación con segmentos de arriostrar de 60cm y 80cm (relación 4:1 y 3:1). Se compara la performance tabulada en la tabla anterior. Por ejemplo para un desplazamiento de 6.25mm el cociente entre la carga del ensayo 6b y el 3d es 1.65, es decir que el modelo 6b resiste una carga 65% superior que el 3d para ese desplazamiento observado.

Tabla 4

6d/3e

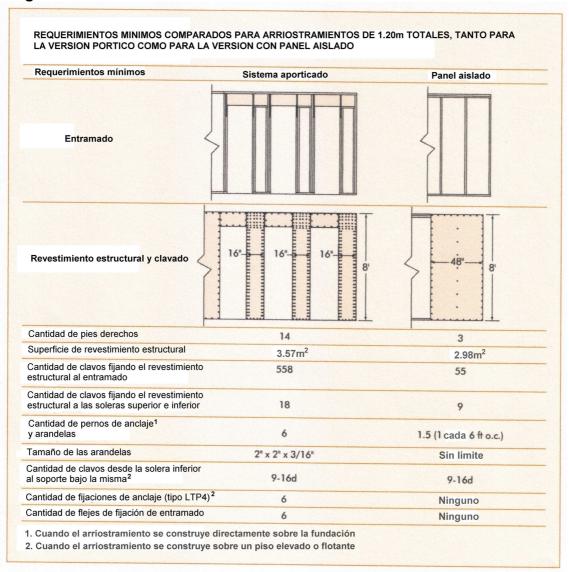
RELACION ENTRE LAS CARGAS PARA PARES DE ENSAYOS REFERENCIADOS EN LA COLUMNA "Relación Resultante" EN LOS DESPLAZAMIENTOS MEDIDOS. Relación para los siguientes desplazamientos determinados (en mm) Relación resultante 2.5 18.75 37.5 6b/3d 1.72 1.79 1.65 1.95 2.06 2.16 2.27 6d/3d 1.79 1.66 1.69 1.73 1.78 1.82 1.89 6b/3e 2.40 2.34 2.36 2.39 2.45 2.47 2 47 2.49

2.22

2.36

■ Los ensayos con pórticos 6:1 continuos (6b) resultaron 65% a 127% mejores que aquellos con arriostramiento aislado de 1.20m con retornos (3d) y 134% a 147% superiores que los de arriostramiento aislado sin retorno (3e).

2.12


2.11

2.08

2.06

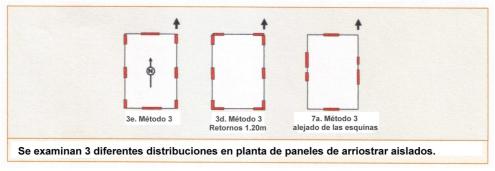

- Los ensayos con mitad de pared construída con pórticos y la otra mitad con segmentos de arriostramiento de relación 3:1 y 4:1 (6d) se comportaron 66% a 89% mejor que aquellos con segmentos de 1.20m (3d) y retorno de esquina y 106% a 149% mejor que aquellos sin retorno (3e).
- Para la misma proporción de arriostramiento los pórticos con pies derechos de relación 6:1 se comportaron significativamente mejor que los segmentos de 1.20m aislados. La especulación que los pórticos delgados pueden producir un piso blando o débil no es confirmada por los ensayos.
- El caso en que se mezclan pórtico y segmentos 4:1 se comportó significativamente mejor que el de paneles aislados de 1.20m. El ensayo no permite sostener la preocupación acerca de la combinación de sistemas.
- Como los resultados del ensayo anterior contradicen la percepción según la cual los pórticos con pies derechos formados por segmentos de arriostrar angostos de relación 6:1 no pueden ser tan rígidos como los mas anchos se necesita ahondar en el análisis. Mientras el ancho de los segmentos de pared de arriostrar es un factor importante en la determinación de la rigidez del conjunto, existen otros factores que deben tenerse en cuenta como las uniones con la parte superior e inferior de la pared, uniones semirrígidas entre el revestimiento y la viga de cabecera y el número de medios de unión. En adición a la mayor diferencia, que los pórticos presentan transmisión semirrígida de momentos debido a la sobreposición del revestimiento y la viga de cabecera.
- El pórtico presenta las siguientes ventajas respecto del sistema de paneles aislados:
 - Tres uniones semirrígidas capaces de transmitir momento.
 - 4½ veces mas pies derechos.
 - 1.20 veces mas revestimiento.
 - 10 veces la cantidad de clavos entre revestimiento y entramado.
 - El doble de clavos entre revestimiento y soleras inferior y superior.

Figura 20

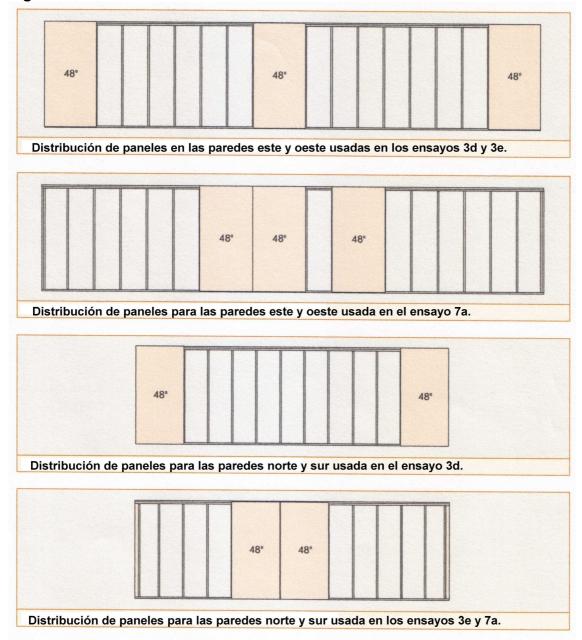

El siguiente ensayo se realizó para comparar diferentes formas de utilizar el método de arriostrar con paneles aislados de 1.20m en concordancia con el método 3 del IRC y el IBC. El objetivo principal es estudiar el efecto de colocar el arriostramiento en las esquinas o lejos de ellas, basados en la sección R602.10.1 del IRC. El total de arriostramiento es 32%. La distribución de plantas se muestra en la figura 21

Figura 21

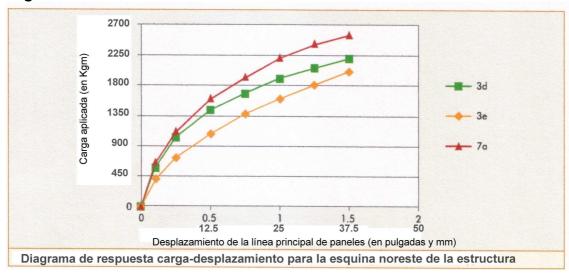

La figura 22 a continuación muestra la distribución de paneles de arriostramiento para cada pared. Adicionalmente el ensayo 5d incluye un anclaje con capacidad de 360kg en cada esquina.

Figura 22

La Figura 23 muestra la relación carga aplicada-desplazamiento en la esquina noreste de la estructura como se muestra en la figura 21.

Figura 23

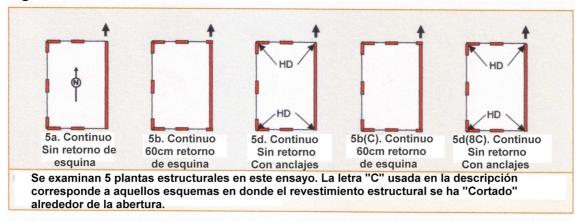
La *tabla 5* muestra los resultados del ensayo graficados en la diapositiva anterior.

Tabla 5

RESULTADO	OS DE ENS	SAYO, CARO	SAS MEDIDA	AS EN LA E	SQUINA NE	DE LA ESTI	RUCTURA
		Carga (en K	gm) para cada e	ensayo y para ca	ıda desplazamie	ento medido	
Ensayo tipo	2.5 mm	6.25 mm	12.5 mm	18.75mm	25.0 mm	31.25 mm	37.5 mm
3d	572	1027	1423	1678	1894	2068	2196
3e	411	725	1081	1368	1596	1814	2013
7a	657	1106	1601	1924	2201	2410	2548

La *tabla 6* compara el comportamiento registrado en la tabla anterior y en el gráfico de carga-desplazamiento. Por ejemplo para un desplazamiento de 0.1" el cociente entre la carga que resiste la configuración 3d y la carga que resiste la configuración 3e es 1.39; lo cual significa que la configuración del ensayo 3d resiste un 39% mas de carga para el mencionado desplazamiento.

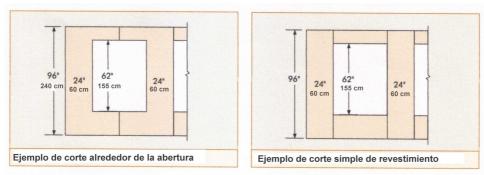
Tabla 6


MEDIDOS INDICA	ADOS							
Relación entre ensayos para cada uno de los desplazamientos medidos								
Rel. entre ensayos	2.5 mm	6.25 mm	12.5 mm	18.75 mm	25.0 mm	31.25 mm	37.5 mm	
3d/3e	1.39	1.42	1.32	1.23	1.19	1.14	1.09	
7a/3d	1.15	1.08	1.12	1.15	1.16	1.17	1.16	
7a/3e	1.60	1.52	1.48	1.41	1.38	1.33	1.27	

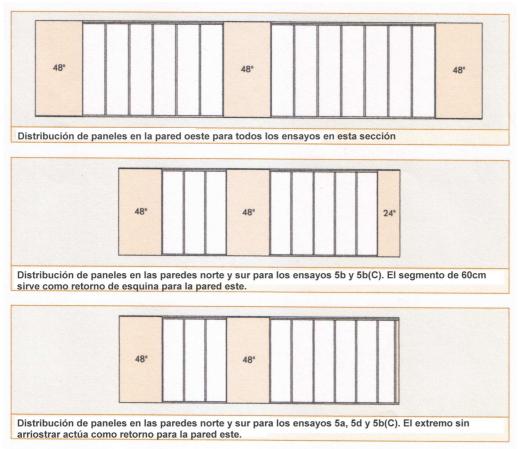
■ Los retornos de esquina en el ensayo 3d incrementaron la resistencia entre 10% y 40% sobre el rango de resultados tabulados en la figura 25 respecto de los del ensayo 3e; adicionalmente los retornos proveyeron una resistencia parcial en contra del levantamiento.

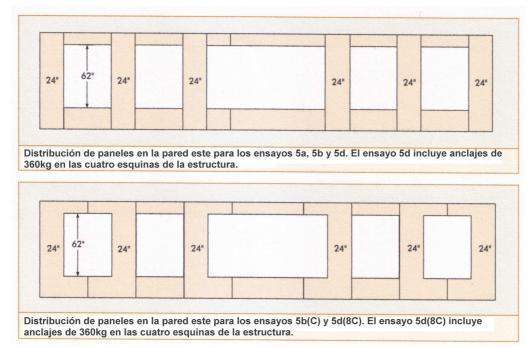
- El ensayo 7a en el que no había arriostramiento ni en esquina ni extremo de pared pero que incluyó un segmento de arriostrar de 2.40m presentó una resistencia de 30% a 60% superior al ensayo 3e y del 10% al 15% superior al ensayo 3d.
- La presencia de un segmento de 2.40m tiene un efecto superior al de colocar segmentos de 1.20m en las esquinas o en los extremos de la línea de pared.
- Los reglamentos establecen una serie de alternativas de configuración de arriostramiento considerada equivalente. Mientras todas cumplen con el mínimo requerido resulta evidente que existen grandes diferencias de comportamiento y performance entre unas y otras que pueden llegar al 60%. Estas diferencias dependen de la ubicación (cerca o lejos de los extremos o esquinas) y de la concentración (menos segmentos mas largos se comportan mejor que mas segmentos cortos). Como conclusión se puede considerar que el comportamiento de las diferentes configuraciones es complejo y que el mismo puede no resultar intuitivo.

El siguiente ensayo se realizó para determinar si el corte del revestimiento estructural alrededor de las aberturas como en los ensayos 5b(C) y 5d(8C) tiene influencia en el comportamiento o no. Las plantas se muestran en la fig. 24 Nótese que los retornos de 60cm en los ensayos 5b(C) y 5d(8C) no cuentan por estar junto a una abertura de altura completa. El arriostramiento total es 32%.

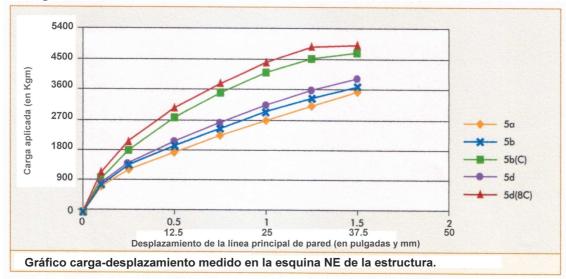

Figura 24

El presente ensayo compara el comportamiento del revestimiento cortado en rectángulos de 60cm de ancho como en la Figura 25B y cortado en forma de "C" para acomodarse al hueco de la abertura como se muestra en la Figura 25A. Ambas configuraciones se acomodan a diferentes prácticas constructivas en la fabricación de paneles.


Figura 25A


Figura 25B

La figura 26 muestra la distribución de paneles de arriostramiento para cada pared. Adicionalmente el ensayo 5d incluye un anclaje con capacidad de 360kg en cada esquina.


Figura 26

La Figura 27 muestra la relación carga aplicada-desplazamiento en la esquina noreste de la estructura como se muestra en la figura 26.

Figura 27

La tabla 7 muestra los resultados del ensayo graficados en la diapositiva anterior.

Tabla 7

	C	arga (en Kgm) p	ara los siguiente	es desplazamien	tos registrados		
Ensayo tipo	2.5 mm	6.25 mm	12.5 mm	18.75 mm	25.0 mm	31.5 mm	37.5 mm
5a	766	1248	1759	2249	2703	3143	3537
5b	782	1320	1932	2458	2930	3351	3684
5b(c)	967	1830	2783	3514	4114	4502	4699
5d	875	1409	2052	2606	3129	3558	3910
5d(8c)	1144	2038	3034	3758	4374	4835	4892

La *tabla 8* compara el comportamiento registrado en la tabla anterior y en el gráfico de carga-desplazamiento. Por ejemplo para un desplazamiento de ¼" el cociente entre la carga que resiste la configuración 5b y la carga que resiste la configuración 5^a es 1.06; lo cual significa que la configuración del ensayo 5b resiste un 6% mas de carga para el mencionado desplazamiento.

Tabla 8

MEDIDOS INDICA	ADOS						
	Re	lación entre ens	ayos para cada u	ıno de los despla	zamientos me	didos	
Rel. entre ensayos	2.5 mm	6.25 mm	12.5 mm	18.75 mm	25.0 mm	31.25 mm	37.5 mm
5b/5a	1.02	1.06	1.10	1.09	1.08	1.07	1.04
5d/5a	1.14	1.13	1.17	1.16	1.16	1.13	1.11
5b(C)/5b	1.24	1.39	1.44	1.43	1.40	1.34	1.28
5d(8C)/5d	1.31	1.45	1.48	1.44	1.40	1.36	1.25

- El ensayo 5b con un retorno de esquina de 60cm mostró un incremento del rendimiento del 10% respecto del ensayo 5a sin dicho retorno.
- El uso de anclajes de 360kg en el ensayo 5d produjo un incremento en el rendimiento del 10% al 15% sobre la configuración 5a que no los tenía.
- El corte en "C" del revestimiento alrededor de la abertura (configuración 5b(C)) mejoró el rendimiento respecto de la configuración 5b con cortes rectangulares de revestimiento entre un 25% y un 45%.
- La misma situación pero con anclaje (configuración 5d(8C)) produjo mejoras del orden del 25% al 50% respecto de la configuración 5d con anclaje y cortes rectangulares de revestimiento.
- La presencia de retornos de esquina de 60cm en la pared con revestimiento continuo contribuyó muy poco al rendimiento total.
- El anclaje de 360kg resultó apenas marginalmente superior en su comportamiento al de los retornos de 60cm.
- Notablemente el corte del revestimiento en forma de "C" siguiendo la forma de la abertura mostró una mejora significativa en el rendimiento del orden del 25% al 50% respecto a la versión con cortes rectangulares resultando muy superior al uso de retornos o anclajes.