PROYECTO ESTRUCTURAL DE LA RÉPLICA DE LA PIEDRA MOVEDIZA: COMPORTAMIENTO ESTÁTICO Y DINÁMICO

María Haydée PERALTA^a, Norma Luján ERCOLI^a; María Laura GODOY^a; Irene Elisabet RIVAS^b; María Inés MONTANARO^b, Raúl O. BACCHIARELLO^b(*)

a Ingeniero Civil; b Ingeniero en Construcciones Docentes Investigadores del Área Estructuras – Departamento de Ing. Civil- Facultad de Ingeniería – Universidad Nacional del Centro de la Provincia de Buenos Aires, -Olavarría- Buenos Aires

(*) Graduado de la Facultad de Ingeniería de la Universidad Nacional del Centro de la Provincia de Buenos Aires, dedicado a la actividad profesional en temas relacionados con la Ingeniería Estructural.

RESUMEN

En este trabajo se describen las actividades involucradas en el desarrollo del Proyecto: Réplica Piedra Movediza, emplazada en Cerro La Movediza de la ciudad de Tandil en Mayo de 2007. Las características del proyecto generaron trabajos multidisciplinarios que involucraron: topógrafos; geólogos; empresas particulares: para diseño y materialización del material de la cubierta; para construcción de los anclajes, izaje y posterior montaje; Departamento de Aeronáutica Universidad de La Plata; Área Estructuras del Departamento de ingeniería Civil UNCPBA; empresa metalúrgica y profesionales de la Secretaría de Obras Públicas de la Municipalidad de Tandil.

Se pone énfasis en el proyecto estructural, para el cual se adoptó una tipología consistente en una estructura metálica interna formada por un entramado constituido por cuatro reticulados dispuestos en dos planos ortogonales. Estos reticulados descargan en una columna reticulada con su eje vertical coincidente con la vertical del lugar. La estructura se complementa con cuadernas exteriores transversales, longitudinales y horizontales, que cumplen con la función: de copiar la geometría externa de la piedra y servir de molde para la cubierta exterior y la función resistente de transmitir los esfuerzos que provocan las acciones a la estructura interna. Se realizó el análisis estático y dinámico de la estructura resistente.

ABSTRACT

The activities involved in the development of the Project: "Piedra Movediza" replica, are described in this work. The Piedra Movediza replica was located in the Cerro La Movediza of the city of Tandil in May of 2007. The project features generated multidisciplinary works that involved: topographers; geologists; particular companies for design and materialization of cover material, for construction of anchorages, hoisting and later assembly; Aeronautics Department of La Plata University; Structures Area of Department of Civil Engineering UNCPBA; metallurgical company and professionals of Secretary of Public Works of Municipality of Tandil.

In this paper we focuses on the structural project, for which the selected typology was an internal metallic structure consisting of a framework constituted by four cross-linking arranged in orthogonal planes. These cross-linkings unload on a frame column with its vertical axis coincident with the vertical of the place. The structure is supplemented by traverse, longitudinal and horizontal external ribs which have the function of copying the external geometry of the stone and being the mold for the external cover. The resistant function of these ribs is to transmit to the internal structure the efforts that cause the actions. The static and dynamic analysis of the resistant structure was carried out in this work.

1. EQUIPO DE TRABAJO

A partir de la firma de un convenio entre la Municipalidad de la ciudad de Tandil y la Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA) para efectuar los estudios que permitieran proyectar una réplica de la Piedra Movediza se conformó el Equipo de Trabajo con docentes y un graduado del Área Estructuras del Departamento de Ingeniería Civil, coordinado por la Ing. María Haydée Peralta que se complementó con docentes del Área de Hidráulica y Vías de Comunicación Agr. Carlos Melitón, Ing. Daniel Moris, y el alumno Andrés Negrete, de la Facultad de Ingeniería de la UNCPBA. Como participantes externos la Ing. Ana Scarabino y equipo de la Universidad Nacional de La Plata Departamento Aeronáutica, y el Geólogo Lic. Carlos Di Salvo.

2. PLANIFICACIÓN DE ACTIVIDADES

Se elaboró el Plan de Actividades a partir de las pautas establecidas referidas a que la réplica de la piedra debía tener las mismas dimensiones geométricas, se emplazaría fija en la misma posición y ubicación del cerro La Movediza que la piedra original. Asimismo, estaría constituida por una estructura interna metálica y sería recubierta por un material capaz de reproducir la textura y color de la piedra original.

Las actividades comprendieron:

- Relevamiento de información disponible sobre el tema
- Estudios Topográficos que incluyeron:
 - a) Relevamiento planialtimétrico del cerro en el entorno del lugar de emplazamiento.

- b) Relevamiento geométrico de la piedra caída a efectos de reconstituir la geometría original y elaboración del modelo geométrico espacial digitalizado.
- Estudios geológicos y geotécnicos de la zona de emplazamiento de la piedra a efectos de evaluar la calidad de la roca de fundación y detectar posibles fisuras.
- Ensayo en túnel de viento a efectos de evaluar las presiones originadas por el viento y la localización de las mismas.
- Selección del Material de la cubierta a efectos de respetar la textura y color de la piedra original.
- Proyecto Estructural de la réplica: evaluación estática y dinámica

3. DESCRIPCIÓN DE LAS ACTIVIDADES

3.1 Estudios Topográficos

Relevamiento Planialtimétrico del Cerro

Los relevamientos topográficos planialtimétricos permitieron determinar la posición y ubicación de la Réplica coincidentes con los de la piedra original que se indica en Figura 1.

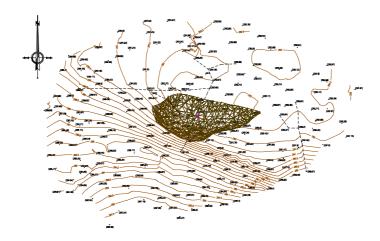


Figura 1: Emplazamiento de la Réplica en el coronamiento del cerro

Relevamiento Geométrico de la piedra caída

La geometría de la réplica se determinó a partir del análisis de la información disponible y del relevamiento de la geometría de la piedra caída que yace al pie del Cerro La Movediza. A tal fin se utilizaron: Taquímetros Electrónicos a rayo infrarrojo y láser y Sistema de receptores GPS. Se relevaron planialtimétricamente 1523 puntos entre los tres trozos existentes de la piedra. El estudio permitió indicar que la piedra tenía un Volumen aproximado de 91 m³; un peso aproximado de 248 ton y una superficie externa aproximada: 133 m². También se determinó el centro de gravedad que permitió observar que se encuentra en la vertical que pasa por el centro del apoyo indicado a 1.81 m. El hecho que la vertical que pase por el Centro de Gravedad caiga en la zona de apoyo determinada permite justificar el equilibrio en que se encontraba la piedra original además de ser indicativo de que las mediciones reconstruyen casi fehacientemente la realidad en cuanto ubicación y geometría de la piedra original. La geometría resultante se indica en Figura 2.

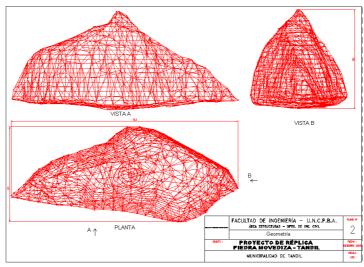


Figura 2: Geometría de la Piedra

3.2 Estudios Geológicos y Geotécnicos

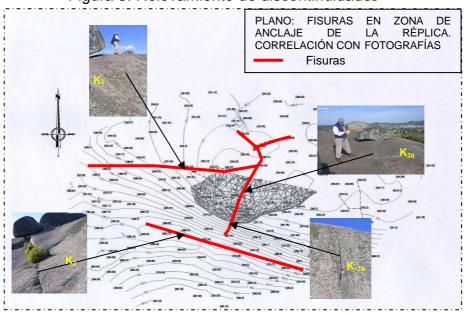


Figura 3: Relevamiento de discontinuidades

Estos estudios, comprendieron la evaluación de las discontinuidades del cerro existentes en el lugar de emplazamiento que se indican en Figura 3, por un lado. Observándose que el macizo está cruzado por una fisura cuyas características geológicas y geotécnicas fueron estudiadas concluyendo que la misma no significa en modo alguno, una imposibilidad en la tarea de arriostramiento de la Réplica al macizo rocoso.

Por otro lado, se estudiaron las características de la roca base que permitieron determinar la profundidad de los anclajes y el dimensionado de los mismos. Se informó que el macizo rocoso es de estructura granítica y que presenta muy buenas características geológicas² para la materialización de los anclajes de la Réplica.

Las conclusiones de los estudios mencionados incluyeron recomendaciones para la ejecución de los trabajos para la materialización de los anclajes³ relativos a:

- a. Los anclajes deben efectuarse en roca sana y no paralelo ni tangente a la fisura relevada.
- Tipo de anclajes mecánicos, tensionados e inyectados implantados en el macizo rocoso de manera de no efectuar perforaciones a distancias menores de 50 cm de la fisura.
- c. En roca sana hay que considerar una resistencia a la compresión del orden de 60 MPa, ángulo de fricción mayor a 50°; resistencia a la tracción 10 MPa; Cohesión aparente > 5 MPa.
- d. Para la verificación de la interfaz inyección-roca se puede considerar una tensión de corte de 4 kg/cm²
- e. Disposición de los anclajes: verticales en la cara sur de la placa de anclaje y a 45º introduciéndose en el macizo rocoso hacia el norte.

3. 3 Estudio en Túnel de Viento

Este estudio permitió valorar la incidencia de la topografía del terreno y de la geometría de la estructura en la distribución de las presiones del viento. Se consideraron 8 direcciones de viento: N, S, E, O, NE, NO, SO y SE. Se midieron, asimismo, las fuerzas estáticas y dinámicas en el anclaje en la dirección de viento y laterales. Se informó el rango de frecuencias normalizadas en que se concentra la mayor energía de cargas aerodinámicas no estacionarias.

Se ensayó en el túnel de viento de capa límite del Departamento Aeronáutica de la Facultad de Ingeniería de la UNLP un modelo a escala 1:40 de la Réplica de la Piedra Movediza y parte de la cumbre del Cerro La Movediza, construidos de acuerdo a la geometría especificada por la Facultad de Ingeniería de la UNCPBA. El modelo de la cumbre del cerro fue modificado para posibilitar su rotación en la sección de prueba del túnel y el estudio de vientos de ocho direcciones (S, SO, O, NO, N, NE, E y SE). Las direcciones S (dirección de vientos más frecuentes), SO (dirección de los vientos de mayor intensidad) y SE respetan la geometría original. De acuerdo a lo observado en el sitio de emplazamiento, se estima que las modificaciones en el modelado del cerro son conservativas, en el sentido de que pueden inducir cargas de viento en el ensayo mayores que las que se obtengan en la realidad. En Figura 4 se observa una imagen de la disposición de la maqueta ensayada en el túnel de viento y del equipamiento utilizado.

El modelo de la Réplica fue adaptado para medir fuerzas en la dirección del viento y laterales con la balanza aerodinámica en una primera etapa del trabajo, y luego fue instrumentado con 56 tomas de presión para obtener la distribución de presiones sobre el mismo. Se adquirieron datos sobre la maqueta construida al efecto, para velocidades de viento que variaron de 6 a 16 m/s. Los resultados obtenidos se escalaron para obtener los correspondientes a 50 m/s, equivalentes a 180 km/h considerada velocidad de diseño.

La temperatura en la sección de prueba del túnel y la velocidad del viento a la altura de la Piedra fueron medidas con el anemómetro de hilo caliente Dantec Flowmaster. Para cada dirección del viento se midieron fuerzas y distribución de presiones a distintos valores de velocidad para verificar la independencia del número de Reynolds de los coeficientes adimensionales de fuerza y presión. El número de Reynolds en los resultados fue calculado en base a la altura del modelo de la piedra. Los resultados de las mediciones de fuerzas medias se reportan como coeficientes adimensionales de fuerza longitudinal (resistencia), Cd, y lateral, Ct, definidos respectivamente según ecuación 1.

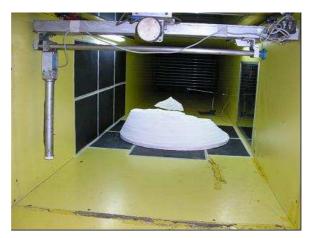


Figura 4: Ensayo en Túnel de Viento

$$C_{D} = \frac{D}{\frac{1}{2} \cdot \rho \cdot V^{2} \cdot A_{ref}} \qquad ; \qquad C_{T} = \frac{T}{\frac{1}{2} \cdot \rho \cdot V^{2} \cdot A_{ref}}$$
 (1)

donde: D y T son la fuerza longitudinal y lateral respectivamente sobre la Réplica, ρ es la densidad del aire, corregida por temperatura, V la velocidad del viento medida a la altura de la Piedra y A_{ref} un área de referencia, siendo elegida la del triángulo formado con el máximo ancho y la máxima altura de la piedra (12.3 m y 5.4 m respectivamente en escala real).

Con el objeto de estudiar picos de carga instantánea y la posible existencia de desprendimientos de vórtices que pudieran provocar cargas periódicas se adquirieron y procesaron valores instantáneos de fuerza longitudinal y lateral y se analizaron los histogramas y espectros normalizados de las mismas. La frecuencia de adquisición de cargas instantáneas fue de 2000 Hz. La frecuencia normalizada se definió en base a la altura H y la velocidad V como f.H/V.

En el caso de los espectros, se promediaron para cada dirección de viento los espectros normalizados medidos a 8, 12 y 16 m/s.

Se realizaron mediciones de distribución de presiones en el modelo de la Piedra para las ocho direcciones de viento (N, NE, E, SE, S, SO, O, NO), presentándose la información en forma de coeficiente adimensional de presiones.

$$C_{p} = \frac{P - P_{at}}{\frac{1}{2} \cdot \rho \cdot V^{2}} \tag{2}$$

La posición de las tomas de presión sobre el modelo se muestra en las Figuras 5 a 7. La Figura 7 muestra también la posición del punto de anclaje.

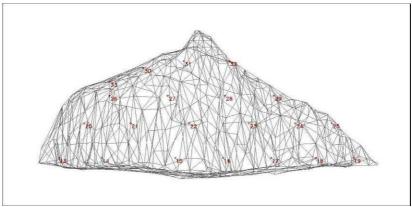


Figura 5: Tomas de presión en el modelo (vista sur)

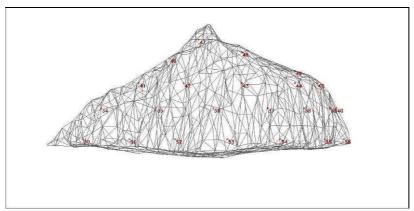


Figura 6: Tomas de presión en el modelo (vista norte)

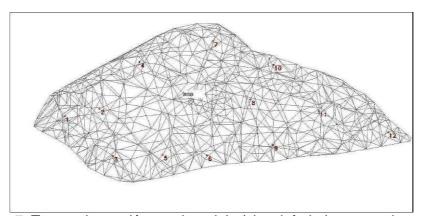


Figura 7: Tomas de presión en el modelo (vista inferior) y punto de anclaje

De acuerdo a lo indicado, los estudios efectuados en túnel de viento permitieron obtener la siguiente información:

Coeficientes de fuerzas aerodinámicas longitudinal, Cd (en la dirección del viento) y lateral, Ct (positivo hacia la izquierda visto de espaldas al viento). Se dispuso de los coeficientes obtenidos para todas las direcciones de viento y para cada valor de velocidad ensayado, así como el promedio de todas las velocidades. Se observó que en el rango ensayado los coeficientes Cd y Ct no presentaron una variación significativa con el número de Reynolds.

A continuación, en Figura 8, se muestran los histogramas de valores instantáneos de Cd y Ct para las direcciones S y SO estudiadas. Los espectros normalizados, Figura 9, de Cd y Ct permitieron observar el rango de frecuencias normalizadas en que se

concentra la mayor energía de cargas aerodinámicas no estacionarias.

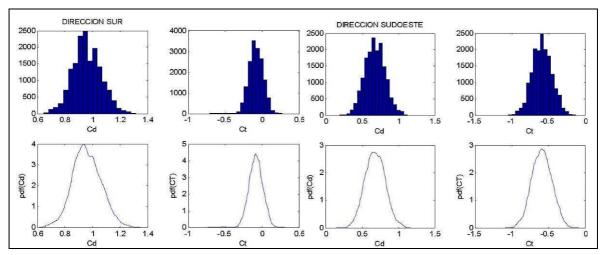


Figura 8: Histogramas de valores instantáneos de Cd y Ct y función densidad de probabilidad

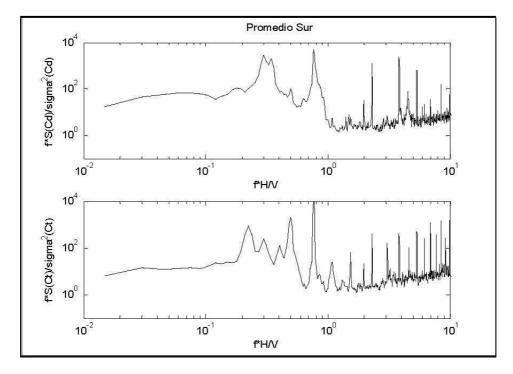


Figura 9: Espectros normalizados de coeficientes de Cd y Ct para la dirección Sur

La Tabla 1 muestra los coeficientes de presiones correspondientes a cada dirección del viento en los puntos indicados en las Figuras 5 a 7.

Tabla 1: Coeficientes de presión sobre la Piedra Movediza

	Dirección del viento							
Toma	S	so	0	NO	N	NE	Е	SE
1	-0.446	-0.475	0.130	-1.047	-0.529	-0.244	-0.276	-0.802
2	-0.377	-0.551	0.184	-0.686	-0.301	-0.421	-0.267	-0.614
3	-0.615	-1.467	-0.574	-0.305	-0.541	-1.077	-0.245	-0.596
4	0.904	0.779	-0.184	-0.518	-0.247	-0.337	-0.223	-0.032
5	-0.575	-1.206	-0.376	0.306	0.415	0.278	-0.273	-0.669
6	-0.540	-1.538	-0.705	-0.039	0.506	0.214	-0.081	-0.826
7	0.198	-1.316	-0.778	-0.502	-0.468	-0.384	-0.519	0.688
8	-0.490	-1.144	-0.653	-0.974	-0.957	-0.634	-0.563	-1.476
9	-0.462	-1.128	-0.588	-1.149	-0.627	-0.040	-0.622	-1.276
10	-0.505	-0.844	-0.595	-0.386	-0.470	-0.873	0.221	-0.158
11	-0.491	-1.174	-0.628	-1.218	-1.260	-0.483	-0.532	-1.067
12	-0.817	-0.832	-0.120	-0.794	-0.773	-0.666	-0.256	-0.696
13	0.951	1.382	-0.246	-0.905	-0.308	-0.511	-0.422	-0.253
14	1.242	1.218	0.054	-0.801	-0.217	-0.598	-0.332	-0.051
15	1.314	-0.353	-1.088	-0.417	-0.250	-0.363	-0.819	0.434
16	0.151	-1.955	-0.861	-0.509	-0.520	-0.352	0.217	1.173
17	0.616	-0.718	-0.723	-0.347	-0.400	-0.294	0.769	1.413
18	0.335	-0.853	-0.309	-0.500	-0.277	-0.691	0.881	1.552
19	-1.195	-1.095	-0.238	-0.744	-0.507	-1.055	1.225	0.548
20	0.947	0.864	0.021	-0.544	-0.195	-0.461	-0.165	-0.234
21	1.210	0.190	-0.706	-0.491	-0.173	-0.290	-0.530	0.082
22	-0.029	-2.100	-1.097	-0.353	-0.203	-0.739	-1.262	0.606
23	0.567	-0.460	-0.395	-0.219	-0.065	-0.201	0.500	0.892
24	0.366	-0.804	-0.333	-0.507	-0.427	-0.600	0.497	0.853
25	-0.574	-1.169	-0.284	-0.378	-0.269	-1.413	0.318	0.112
26	0.412	-0.071	-0.022	-0.424	-0.100	-0.404	-0.178	-0.283
27	0.040	-1.254	-1.175	-0.313	-0.121	-0.491	-1.035	-0.153
28	0.780	-0.512	-0.445	-0.318	-0.179	-0.524	0.000	0.530
29	0.278	-0.887	-0.047	-0.277	-0.155	-1.744	0.596	0.650
30	-0.612	-0.755	-0.838	-0.538	-0.248	-0.667	-0.687	-0.610
31	-1.269	-0.934	-1.300	-0.398	-0.195	-0.827	-0.790	-0.545
32	-0.477	-3.485	-0.774	-0.364	-0.183	-1.174	0.228	-0.685
33	-0.560	-1.769	-0.209	-0.996	-0.448	-0.572	-0.355	-0.687
34	-0.439	-1.127	-0.173	0.266	0.965	0.499	-1.188	-0.708
35	-0.528	-0.907	-0.125	0.452	1.510	0.305	-0.670	-0.877
36	-0.390	-1.111	-0.292	0.774	1.448	0.217	-0.291	-0.650
37	-0.490	-1.633	-1.221	0.790	1.313	-0.138	-0.273	-0.725
38	-0.488	-1.869	-0.443	1.170	0.306	-1.125	-0.777	-0.605
39	-0.436	-1.852	0.355	0.707	-0.600	-0.636	-0.240	-0.586
40	-0.574	-2.600	0.879	-1.067	-0.883	-0.790	-0.062	-0.710
41	-0.308	-1.795	-0.416	-0.597	0.334	0.066	-1.118	-0.657
42	-0.347	-1.257	-0.729	-0.077	0.937	0.322	-0.993	-0.670
43	-0.497	-2.012	-0.099	0.573	0.528	-0.206	-0.657	-0.745
44	-0.540	-2.520	-0.846	0.390	-0.396	-0.684	-0.880	-0.650
45	-0.433	-1.266	-0.105	-0.740	-0.464	-0.595	-0.245	-0.613
46	-0.347	-3.262	-0.260	-0.469	-0.381	-0.708	-0.453	-0.649
47	-0.344	-1.716	-1.788	-0.649	0.000	-0.522	-1.340	-0.607

48	-0.589	-2.283	-0.129	-0.680	-0.262	-0.820	-0.874	-0.578
49	-0.575	-1.701	-0.064	-1.063	-0.296	-0.482	-0.593	-0.663
50	-0.509	-1.118	-0.450	-0.149	0.326	0.399	-1.740	-0.797
51	-0.386	-0.831	-0.305	0.190	0.953	0.926	-0.141	-0.819
52	-0.485	-1.065	-0.120	0.898	1.354	0.664	-0.141	-1.086
53	-0.459	-1.128	-0.357	0.977	1.529	0.492	-0.078	-0.704
54	-0.665	-1.711	-1.555	0.888	0.902	-1.234	-0.976	-0.748
55	-0.457	-2.974	0.261	1.228	-0.409	-0.933	-0.312	-0.563
56	-0.590	-2.183	1.197	1.410	0.496	-0.286	-0.393	-0.688

El análisis de los coeficientes de presión indicados permite observar la gran influencia de la geometría irregular y de la topografía del lugar en la distribución de los mismos.

Los datos reportados por los ensayos permitieron la correspondiente calibración de los modelos numéricos de análisis utilizados y la contrastación de los resultados.

3.4 Material de la Cubierta

El material de la cubierta cumple una función estructural por lo cual debe reunir determinados requisitos de resistencia, rigidez y durabilidad. Dadas las particularidades del proyecto, con el material de la cubierta debía lograrse simular la textura y color de la piedra original y optimizarse su peso a efectos de facilitar la tarea de izaje de la réplica.

Desde el punto de vista resistente la réplica debe soportar las presiones del viento y transmitirla a la estructura resistente interna de la misma.

El diseño, además de cumplir los requisitos de rigidez, debía contemplar la compatibilidad de comportamiento con el de la estructura interna de la réplica.

Atendiendo lo antes indicado se evaluó la posibilidad de realizar la cubierta utilizando un hormigón proyectado, o un material compuesto.

El relevamiento de información disponible permite indicar que en los dos casos se puede diseñar un material que cumpla las condiciones de resistencia, rigidez y durabilidad indicadas y requeridas por el Proyecto. No obstante, atendiendo al requerimiento de lograr simular la textura y color de la piedra original puede indicarse que existen una mayor cantidad de antecedentes de trabajos realizados con materiales compuestos en este sentido, justificado su mayor desarrollo dado el uso en las industrias dedicadas al campo de aplicaciones militares, aeronáuticas, automotrices y náuticas. Por otro lado, desde el punto de vista constructivo y de montaje este tipo de materiales presenta ventajas por su menor peso.

De acuerdo a lo indicado se adoptó como material de la cubierta un material compuesto⁴. La investigación efectuada permitió indicar las siguientes pautas para la materialización de la cubierta:

Para lograr el espesor del recubrimiento se recomienda la ejecución de tres capas de diferentes propiedades físicas y mecánicas, cuidando que en la unión de las mismas exista una perfecta transición con el objeto de soportar las tensiones interfaciales que se produzcan entre los laminados estructurales y la capa de color y textura externa símil granito. Considerando lo anterior, se definió al recubrimiento constituido por las siguientes capas:

1. Capa Estructural: Es la capa que provee las propiedades mecánicas finales del laminado estructural.

- 2. Capa de Color y Textura: Es la capa que provee el color y la textura final símil granito de la réplica. Se considera que actúa como barrera UV.
- 3. Capa de Terminación: La misma provee una cubierta tipo "clear" a la capa de color y textura sin modificar las características visuales que ésta proporcione. Se considera a la misma como el elemento de control para el diseño de un plan de mantenimiento preventivo de la réplica.

3.5 Proyecto Estructural

El Proyecto Estructural se realizó considerando que la réplica tendría las mismas dimensiones geométricas, el mismo aspecto, en lo relacionado con la textura y color, que sería emplazada en la misma posición y ubicación del cerro que la piedra original. Los datos aportados por las etapas de estudio previamente indicadas posibilitaron el proyecto estructural.

3.5.1 Tipología Estructural

La tipología adoptada e indicada en Figura 10, consiste en una estructura metálica interna construida en taller y formada por un entramado constituido por cuatro reticulados dispuestos en planos ortogonales de acuerdo a Figura 11. Estos reticulados descargan en una columna o mástil reticulado dispuesto centrado respecto del punto geográfico relevado e indicado como centro del apoyo, con su eje vertical coincidente con la vertical del lugar. La estructura se complementa con cuadernas transversales, longitudinales y horizontales, construidas con planchuelas rigidizadas, que cumplen con una doble función: por un lado copiar la geometría externa de la piedra y servir de molde para la cubierta exterior y, por otro lado, cumplen con la función resistente de transmitir los esfuerzos que provocan las acciones (viento en las distintas direcciones) a la estructura interna. La conexión de horizontales exteriores con reticulados los fundamentalmente en tres planos que cumplen la función de arriostramientos horizontales.

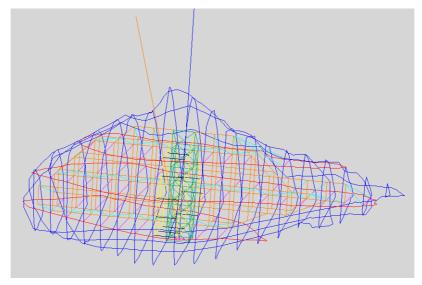


Figura 10: Tipología estructural

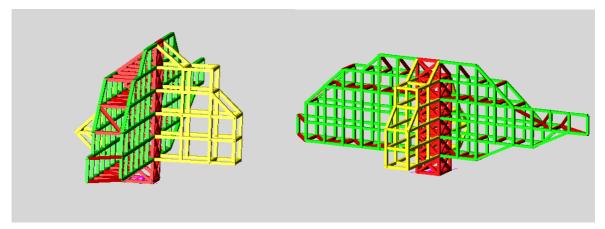


Figura 11: Reticulados interiores

3.5.2 Análisis Estructural

Para efectuar el análisis estructural estático y dinámico se utilizó el software ALGOR⁵ disponible en Área Estructuras de la Facultad de Ingeniería de la Universidad Nacional del Centro de la Provincia de Buenos Aires.

3.5.2.1 Comportamiento Estático

✓ Modelos Planos

En primera instancia y, a efectos de realizar un predimensionado^{6, 7} de los elementos constitutivos de la estructura se efectuaron análisis simplificados en planos ortogonales coincidentes con los planos de los reticulados principales del entramado. Estos análisis además de posibilitar el predimensionado inicial permitieron adoptar las tipologías de los reticulados del entramado acordes con la forma externa y dimensiones de la piedra original.

En Figura 11 se observan los reticulados dispuestos en el interior de la réplica.

✓ Estado de cargas

Se consideraron estados de cargas simplificados acordes a los modelos adoptados, e hipótesis de cargas que surgieron de la superposición de la carga permanente (peso propio estructura + peso de la cubierta) y viento. Al efecto se consideró un peso de cubierta distribuido de 3 toneladas y una presión de viento correspondiente a una velocidad de 50 m/s equivalente a 180 km/h. La distribución de las presiones de viento surgieron de la consideración de la presión básica de viento afectada de los coeficientes de presión aportados por los ensayos en túnel de viento para las 8 direcciones ensayadas y para la máxima velocidad correspondiente a 50 m/s.

En el caso de los *reticulados transversales* se consideró la sobrecarga correspondiente a viento norte, por ser el estado más desfavorable. En la Figura 12 se indican las cargas simplificadas consideradas en esta instancia.

✓ Modelos Espaciales

A partir del predimensionado efectuado con el análisis sobre modelos planos, se realizaron análisis estáticos espaciales considerando 9 hipótesis de cargas correspondientes a la consideración de cargas permanentes y a la combinación de los 8 estados de cargas de vientos independientes con la carga permanente. A modo de ejemplo en la Figura 12 se presenta la hipótesis que combina el estado de cargas permanentes con viento Norte

El análisis efectuado permitió obtener las reacciones que se indican en la Tabla 2 para las hipótesis de cargas consideradas. Los nudos 195 y 261 corresponden a los montantes de la columna central ubicados al sur del cerro y los nudos 210 y 273 al norte.

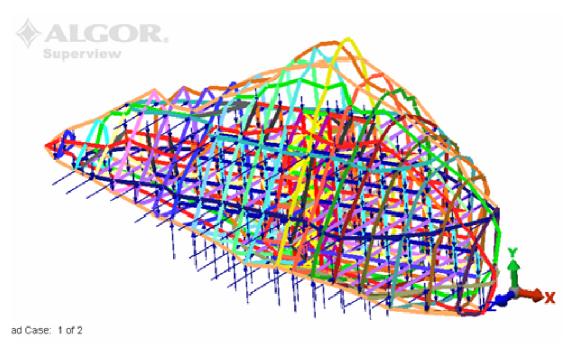


Figura 12: Modelo espacial con Viento Norte y cargas permanentes

Tabla 2: Reacciones en los vínculos

		REACCIONES							
Nu do	Hipótesis de Carga	Componente de reacción							
		RX (t)	RY (t)			MY (t m)	MZ (t m)	Q máx	
195	Hipótesis 1: PP 1 (Peso propio+cubierta)	-0,19	-0,07	3,88	0,01	-0,07	-0,01	0,20	
195	Hipótesis 2: V 1 (Sobrecarga de viento Este)	-3,62	1,52	-4,58	-0,19	-0,86	-0,20	3,93	
195	Hipótesis 3: V 2 (Sobrecarga de viento NE)	2,78	-1,15	5,09	0,13	0,65	0,16	3,01	
195	Hipótesis 4: V 3 (Sobrecarga de viento SE)	-2,40	-0,22	-7,46	0,08	-0,56	-0,12	2,41	
195	Hipótesis 5: V 4 (Sobrecarga de viento NO)	-1,60	1,33	0,40	-0,22	-0,47	-0,09	2,08	
195	Hipótesis 6: V 5 (Sobrecarga de viento Norte)	1,43	0,94	14,05	-0,23	0,26	0,06	1,71	
195	Hipótesis 7: V 6 (Sobrecarga de viento Sur)	0,17	-1,86	-5,73	0,32	0,08	0,03	1,87	
195	Hipótesis 8: V 7 (Sobrecarga de viento SO)	3,05	-2,46	-3,23	0,38	0,73	0,18	3,92	
195	Hipótesis 9: V 8 (Sobrecarga de viento Oeste)	0,51	-0,16	1,64	-0,03	0,09	0,02	0,54	
210	Hipótesis 1: PP 1 (Peso propio+cubierta)	-0,16	0,13	1,23	-0,02	-0,03	-0,01	0,21	
210	Hipótesis 2: V 1 (Sobrecarga de viento Este)	4,41	1,66	3,42	-0,24	0,87	-0,23	4,71	
210	Hipótesis 3: V 2 (Sobrecarga de viento NE)	-3,88	-1,21	-3,70	0,16	-0,78	0,19	4,07	
210	Hipótesis 4: V 3 (Sobrecarga de viento SE)	2,66	0,34	5,98	0,03	0,56	-0,09	2,69	
210	Hipótesis 5: V 4 (Sobrecarga de viento NO)	1,48	1,71	-3,24	-0,30	0,35	-0,07	2,26	
210	Hipótesis 6: V 5 (Sobrecarga de viento Norte)	-1,87	0,71	-11,30	-0,23	-0,34	0,08	2,00	
210	Hipótesis 7: V 6(Sobrecarga de viento Sur)	-0,53	-1,28	5,35	0,30	-0,15	0,07	1,39	

210	Hipótesis 8: V 7 (Sobrecarga de viento SO)	-4,23	-2,50	0,78	0,46	-0,92	0,28	4,92
210	Hipótesis 9: V 8(Sobrecarga de viento Oeste)	-0,96	0,09	-2,65	-0,05	-0,14	0,09	0,96
261	Hipótesis 1: PP 1 (Peso propio+cubierta)	0,26	0,04	3,49	-0,01	-0,08	0,00	0,26
261	Hipótesis 2: V 1 (Sobrecarga de viento Este)	-4,94	-3,21	0,45	0,38	-0,78	-0,35	5,89
261	Hipótesis 3: V 2 (Sobrecarga de viento NE)	4,41	3,01	2,02	-0,35	0,57	0,29	5,33
261	Hipótesis 4: V 3 (Sobrecarga de viento SE)	-2,72	-2,93	-3,22	0,43	-0,61	-0,26	4,00
261	Hipótesis 5: V 4 (Sobrecarga de viento NO)	-1,78	0,22	5,72	-0,05	-0,44	-0,11	1,79
261	Hipótesis 6: V 5 (Sobrecarga de viento Norte)	1,65	3,09	12,95	-0,45	0,25	0,17	3,50
261	Hipótesis 7: V 6 (Sobrecarga de viento Sur)	1,02	-1,35	-4,76	0,23	-0,05	-0,04	1,69
261	Hipótesis 8: V 7 (Sobrecarga de viento SO)	5,08	1,42	-3,05	-0,11	0,44	0,18	5,27
261	Hipótesis 9: V 8 (Sobrecarga de viento Oeste)	1,01	0,73	3,00	-0,13	-0,04	-0,01	1,24
273	Hipótesis 1: PP 1 (Peso propio+cubierta)	0,10	-0,10	0,18	-0,01	-0,04	0,02	0,14
273	Hipótesis 2: V 1 (Sobrecarga de viento Este)	4,15	-1,77	1,87	0,36	0,83	-0,24	4,51
273	Hipótesis 3: V 2 (Sobrecarga de viento NE)	-3,31	1,58	-1,44	-0,34	-0,72	0,21	3,66
273	Hipótesis 4: V 3 (Sobrecarga de viento SE)	2,46	-1,63	6,41	0,37	0,43	-0,16	2,95
273	Hipótesis 5: V 4 (Sobrecarga de viento NO)	1,89	-0,03	0,14	-0,04	0,20	-0,04	1,89
273	Hipótesis 6: V 5 (Sobrecarga de viento Norte)	-1,20	1,64	-8,14	-0,41	-0,34	0,12	2,03
273	Hipótesis 7: V 6 (Sobrecarga de viento Sur)	-0,66	-0,79	7,23	0,21	-0,16	0,01	1,03
273	Hipótesis 8: V 7 (Sobrecarga de viento SO)	-3,90	0,80	6,84	-0,10	-0,85	0,19	3,98
273	Hipótesis 9: V 8 (Sobrecarga de viento Oeste)	-0,56	0,37	-0,11	-0,10	-0,19	0,04	0,67

En las Tablas 3 y 4 se indican los valores de esfuerzos obtenidos para el cordón inferior (por ser éste el más solicitado) de los reticulados longitudinales, y del tramo más solicitado de una de las cuadernas transversales. Los esfuerzos más desfavorables de la columna central se producen en correspondencia con los apoyos.

Tabla 3: Esfuerzos máximos cordón inferior reticulado longitudinal

	Envol	Envolvente de Esfuerzos Cordón Inferior Reticulado Longitudinal							
N-	-4,1926	-4,193	-4,193	-4,193	-4,193	-4,1926	-4,193	-4,1926	-4,1926
N+	2,6672	2,667	2,6672	2,667	2,667	2,6672	2,6672	2,6672	2,6672
Ту-	0,0525	0,053	0,0542	0,055	0,056	0,0567	0,0575	0,0583	0,0591
Ту+	0,3354	0,337	0,3376	0,339	0,34	0,3409	0,342	0,3431	0,3442
Tz-	-0,0614	-0,061	-0,061	-0,061	-0,061	-0,0614	-0,061	-0,0614	-0,0614
Tz+	0,152	0,152	0,152	0,152	0,152	0,152	0,152	0,152	0,152
Mt-	-0,0001	-1E-04	-1E-04	-1E-04	-1E-04	-0,0001	-1E-04	-0,0001	-0,0001
Mt+	0,0001	1E-04	0,0001	1E-04	1E-04	0,0001	0,0001	0,0001	0,0001
Му-	-0,0167	-0,012	-0,012	-0,023	-0,034	-0,0458	-0,057	-0,0686	-0,08
Му+	0,0112	0,01	0,0145	0,019	0,023	0,0271	0,0313	0,0355	0,0398
Mz-	0,0019	-0,008	-0,03	-0,053	-0,076	-0,1008	-0,126	-0,1521	-0,1779
Mz+	0,026	0,002	-0,006	-0,01	-0,014	-0,0186	-0,023	-0,0272	-0,0316

Tabla 4: Esfuerzos máximos cuaderna transversal

	Envol	vente c	le Esfue	rzos del t	ramo más	solicitad	o de cuad	derna tran	sversal
N-	-0,0942	-0,0941	-0,0939	-0,0938	-0,0937	-0,0936	-0,0935	-0,0934	-0,0932
N+	0,1135	0,1137	0,1138	0,114	0,1142	0,1143	0,1145	0,1146	0,1148
Ту-	-0,0119	-0,0118	-0,0116	-0,0115	-0,0114	-0,0113	-0,0112	-0,0111	-0,0109
Ту+	0,1617	0,1618	0,162	0,1621	0,1623	0,1624	0,1626	0,1628	0,1629
Tz-	-0,2818	-0,2818	-0,2818	-0,2818	-0,2818	-0,2818	-0,2818	-0,2818	-0,2818
Tz+	-0,12	-0,12	-0,12	-0,12	-0,12	-0,12	-0,12	-0,12	-0,12
Mt-	0	0	0	0	0	0	0	0	0
Mt+	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001
My-	-0,0444	-0,0334	-0,0224	-0,0121	-0,0035	0,0035	0,0083	0,013	0,0177
My+	-0,0199	-0,0152	-0,0105	-0,0058	0,0004	0,0111	0,0221	0,0331	0,0442
Mz-	-0,016	-0,0158	-0,0155	-0,0156	-0,016	-0,0163	-0,0167	-0,0171	-0,0175
Mz+	0,0715	0,0654	0,0593	0,0532	0,0471	0,041	0,0349	0,0288	0,0227

3.5.2.2 Comportamiento Dinámico

Se procedió al análisis dinámico obteniéndose las características propias de la estructura a efectos de su comparación con la información aportada por los ensayos en túnel de viento, referida al rango de frecuencias normalizadas en que se concentra la mayor energía de cargas aerodinámicas no estacionarias. El rango informado de frecuencias normalizadas se corresponde con una frecuencia de las cargas dinámicas de 1.7 y 6.5 Hz.

Los primeros análisis dinámicos efectuados con el predimensionado utilizado en los análisis estáticos arrojaron valores de la frecuencia fundamental que estaban en el rango de frecuencias de mayor energía de las cargas medidos en el túnel de viento. Ello motivó la rigidización de la columna de la estructura y de otras zonas de importancia que permitió llegar a una frecuencia fundamental de 8 Hz alejada del rango de excitación mencionado.

En la Tabla 5 se indican las frecuencias obtenidas para los tres primeros modos de vibración.

Tabla 5: Frecuencias del sistema

	Frecuencias [Hz]
Modo 1	8.07
Modo 2	8.44
Modo 3	12.36

3.5.2.3 Diseño de la fundación

El diseño de fundación de la réplica de la Piedra Movediza, comprende básicamente 4 anclajes estructurales de 5 m de longitud, insertos en el macizo rocoso tomados por una única placa de anclaje, de 70 mm de espesor, con rigidizadores inferiores dispuestos ortogonalmente e insertos en la roca con material de inyección tipo grout entre roca y placa para asegurar la adherencia adecuada. Adicionalmente, se dispusieron 3 insertos verticales de 1.5 m de profundidad de carácter constructivo.

A efectos de materializar la unión de la estructura con la fundación, la columna central se acarteló y unió mediante soldadura a una placa base de $1200 \times 1150 \times 50$

mm. Dicha placa base se unió, luego del izaje, a la placa de anclaje mediante 20 bulones de 1 ½" tipo ISO 8.8 dispuestos en espera en la placa de anclaje para tal fin. Para ello la placa base disponía de los correspondientes agujeros perfectamente alineados para el montaje.

4. EL PROCESO CONSTRUCTIVO

La dirección del proceso constructivo estuvo a cargo del Ing. Mario Civalieri y del Arq. Omar Groh, Secretario y Subsecretario de la Secretaría de Obras y Servicios Públicos de la Municipalidad de Tandil respectivamente.

La estructura se construyó en una metalúrgica de la ciudad de Tandil. La columna y reticulados ortogonales se prepararon y ensamblaron en la metalúrgica, mientras que las cuadernas fueron cortadas en pantógrafo en otra empresa, de acuerdo a la documentación técnica previamente elaborada, resultando aproximadamente 400 partes diferentes que, mediante un cuidadoso trabajo, fueron correctamente ensambladas en taller.

En Figuras 13, 14 y 15 se observa la columna, los reticulados y parte de las cuadernas y la disposición de las cuadernas transversales y placa base respectivamente.

La cubierta, Figura 16, se construyó en el taller de acuerdo a lo especificado, realizándose algunos ajustes en la dosificación de la capa de color y textura con la colaboración de artistas plásticos de la ciudad de Tandil que desinteresadamente colaboraron con la tarea.

Figura 13 Columna central

Figura 14: Reticulados y cuadernas

Figura 15: Disposición de cuadernas transversales y placa base

Figura 16: Construcción de la Cubierta

La ejecución de las perforaciones para los anclajes, Figura 17, bajo la supervisión de un especialista geólogo fueron realizadas con los recaudos correspondientes dado lo particular del sitio donde se realizaron. Cabe destacar lo laborioso del replanteo definitivo para la ubicación de los anclajes y la placa correspondiente. Al efecto se construyó una plantilla de las dimensiones de la placa de anclaje que facilitó el replanteo atendiendo a los requerimientos del estudio geológico en lo referido al alejamiento del plano de fisura. Los anclajes fueron materializados por una empresa especializada en anclajes en roca que colocaron los insertos y realizaron las inyecciones de acuerdo a lo indicado en las especificaciones. La placa de anclaje, Figura 18, fue izada con la grúa ya instalada al pie del cerro para el montaje de la réplica. La placa de anclaje con sus 20 bulones quedó a la espera de la réplica que debía encastrarse mediante la placa base perforada para ser unida a ella mediante los bulones dispuestos a tal fin. Previo al izaje de la réplica se efectuó una prueba de arrancamiento de los anclajes cuyo resultado estuvo dentro de los límites establecidos para la aceptación de los mismos⁸.

El traslado de la réplica, Figura 19, desde el taller al pie del cerro estuvo cargado de emotividad ya que en todo el recorrido fue acompañada por la gente que con banderas y aplausos demostraron lo que este hecho significaba para ellos.

Figura 17: Perforaciones para los anclajes

Figura 18: Placa de anclaje y bulones

Figura 19: El traslado de la réplica

El proceso constructivo, demandó aproximadamente 4 meses de trabajo, el 13 de Mayo del 2007 se emplazó con éxito la réplica en el coronamiento del cerro. Para el montaje de la misma se utilizó la grúa de gran porte instalada al pie del cerro que debió desplegar 108 metros de pluma para elevar el peso de aproximadamente 9 toneladas en su extremo, Figuras 20 y 21. El 17 de Mayo se realizó el acto

inaugural con la presencia de los señores Presidente y Vicepresidente de la Nación, el señor Gobernador de la Provincia de Bs. As., el señor Intendente Municipal de la ciudad de Tandil y alrededor de 12.000 personas asistentes al acto. En las Figuras 22 y 23 se observan otras imágenes captadas el día de la inauguración.

Figura 20: Pluma de la grúa

Figura 21: Llegada de la réplica a la cima

Figura 22: La réplica previa a su inauguración

Figura 23 La Réplica en su ubicación definitiva

5. COMENTARIOS FINALES

La geometría particular de la réplica y las características del lugar de emplazamiento hicieron que este proyecto se transforme en un verdadero desafío. El desarrollo del proyecto y su posterior ejecución puso de manifiesto la importancia del trabajo en equipo, aunando diferentes disciplinas.

Posibilitó, asimismo, la transferencia de conocimientos desde la Universidad a la comunidad, revalorizando su rol social.

6. REFERENCIAS

- 1 La Piedra Viva. Elías El Hage, Pomy Levy. Alfredo Bossio. Artes Gráficas. 1° Ed. Mayo 2007.
- 2 Informe petrográfico geofísico de los estudios realizados sobre la Piedra Movediza de Tandil. Inédito. Secretaría de Minería. 1962. Buenos Aires.
- 3 Anclajes y sistemas de anclajes. Pérez, M.C. UTN: FRBA. Bs. As. 2004
- 4 Infraestructura Composite Report. Julio 2001.
- 5 ALGOR SOFTWARE PACKAGE V 20.4.
- 6 Reglamento Argentino de Estructuras de Acero para Edificios. CIRSOC 301, Buenos Aires, julio 2005.
- 7 Software Metal 3D, CYPE, Arquitectura, Ingeniería y Construcción, 2007.
- 8 Recommendations for prestressed rock and soil anchors. Post tensioning Institute (PTI).